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An important goal for science education researchers and scholars is it to understand and 

improve processes of science learning and teaching in an evidence-based way (Abell & 

Lederman, 2007). However, processes of learning and teaching are complex: intra- and 

interpersonal phenomena interact with each other on multiple levels (vgl.: Hilpert & 

Marchand, 2018). Moreover, cognitive and non-cognitive constructs of interest in science 

education are typically complex, e.g., non-linear and dynamic (Stamovlasis, 2016; Zhai, Yin, 

Pellegrino, Haudek, & Shi, 2020). Hence, science education researchers need sophisticated 

analysis tools to model relationships and make sense of them. Stochastic data models such as 

linear models are oftentimes inappropriate, even incapable, to capture these complex 

relationships (Breiman, 2001). Singer (2019) argues that educational scholars can benefit from 

adopting data science methods such as machine learning (ML) to explore potentials to 

understand these complex processes and phenomena. Here we seek to eclectically review 

realized potentials, expected developments, and fundamental challenges with regards to 

applying ML in science education research.  

 

What is ML? 

ML refers to data-driven, i.e., inductive, problem solving with computers (Marsland, 2015). 

A widely recognized operational definition for ML states: „A computer program is said to 

learn from experience E with respect to some classes of task T and performance measure P if 

its performance can improve with E on T measured by P” (T. Mitchell, 1997). Hence, ML is 

a form of inductive learning, i.e., learning from examples/experience/data (Nisbet, Elder, & 

Miner, 2009). Inductive learning moves from the specific to the general (the underlying 

rules/laws), thus it is sometimes called the inverse of deduction (Domingos, 2015). Inductive 

learning is consequently associated with an (empirical) risk when extracting rules from 

examples and generalizing to unseen examples (Vapnik, 1996). Through ML, a machine 

attains capabilities without being explicitly programmed, but rather through providing of 

input-output pairs (Géron, 2018). This represents a marked shift from traditional 

programming, where explicit instruction was necessary to transform an input into an output. 

Therein lies also the potential of ML, given the unprecedented availability of large datasets in 

the modern world, especially in the education sector (Baig, Shuib, & Yadegaridehkordi, 2020; 

Halevy, Norvig, & Pereira, 2009). 

 

As a form of inductive learning, ML has some resemblance with experiential human learning 

(Kolb, 1984; Marsland, 2015). Experiential learning represents an important form of learning 

for humans and animals, because it enables them to act in uncertain, novel situations by 

recalling relevant knowledge from similar experiences. Central categories for experiential 

learning are memory, adaptation, and generalization (Marsland, 2015). Memory enables 

recognizing of similar situations. Adaptation enables the flexibility to react differently, 

depending on outcomes. Finally, similarities and differences are used to form generalizations 
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across situations. In one form or another, these categories also play an important role for ML. 

Especially with the advent of deep artificial neural network architectures, activity patterns are 

stored in the networks that form a sort of associative memory (Engel & van Broeck, 2001). 

Adaptation is achieved through providing the network in the learning phase a loss signal, 

which directs it to modify its weights and eventually achieve better generalization capabilities. 

 

Inductive learning, more generally, is considered an important approach also in science for 

problem solving and scientific inquiry (Rothchild, 2006). From a formal logical point of view, 

deductive reasoning is limited because it can only work out consequences of what is already 

known (King et al., 2009). Also from a logical point of view, inductive reasoning is limited, 

because inferring general rules that “describe every member of a set, one must have 

information about every member of that set” (Goodfellow, Bengio, & Courville, 2016, p. 113). 

Hence, forms of reasoning such as induction or abduction are necessary for progress in 

science. Valiant (1984), from a computer science perspective, outlined important theoretical 

underpinnings for the possibility of inductive learning and inference. Valiant (1984) 

introduced the concept of “probably approximately correct” (PAC). It was shown that with a 

certain success probability an arbitrary function could be learnt from examples. However, as 

sometimes associated with the “no-free-lunch” theorem (Domingos, 2015), researchers have 

to provide structure (e.g., constrain hypotheses spaces and inductive biases in algorithms) in 

order to learn something, i.e., extract knowledge from raw data. Not least the practical success 

of ML applications, especially the advent of deep learning (i.e., nested artificial neural 

networks, ANNs), eventually undergirded the acceptance of inductive learning and ML, and 

informed ML researchers on what ML algorithms capability to solve certain problems.  

 

Potentials of ML 

ML is particularly adept to extract information from large and complex datasets (Domingos, 

2015; Halevy et al., 2009). Phenomena in nature and society are typically complex and 

oftentimes highly non-linear, because multiple influencing factors are present which impact 

the system’s behavior on multiple levels in multiple ways (Domingos, 2015; Koopmans & 

Stamovlasis, 2016). Equally complex are processes of communication and language 

(Lieberman, Michel, Jackson, Tang, & Nowak, 2007) – and, consequently, processes of 

learning and teaching (Koopmans & Stamovlasis, 2016), because they intricately rely on 

natural language as a means of representation and conveying information (Brookes & Etkina, 

2007). For example, language is characterized to be compositional (build from elementary 

units), recursive, and hierarchical (Beule, 2008). Meaning in language emerges from the 

interplay of words in a sequential order. However, simple stochastic data models, especially 

linear models, are not well suited to model language: „Complex problems in the real world 

may require much more expressive hypothesis spaces than can be provided by linear 

functions“ (Nisbet et al., 2009, p. 12). ML-based methods can facilitate better modelling and 

assessment of language-related processes such as learning and teaching (Goldberg, 2017; 

Zhai, Haudek, Shi, Nehm, & Urban‐Lurain, 2020). With ML, relationships in complex 

datasets can be inferred and used for problem solving (Rauf, 2021). Especially the learning 

from examples puts ML at an advantage over stochastic data models, because minimal 

constraints are posed onto the algorithm (Breiman, 2001; Nisbet et al., 2009).  
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To model and learn relationships in complex datasets, various learning approaches within the 

domain of ML are commonly differentiated which offer different potentials and challenges for 

researchers. Widely employed learning approaches in science education research are 

supervised and unsupervised ML.1 Both learning approaches differ not least in the following 

dimensions: goals, data requirements, algorithms, and learning procedures.  

 

In supervised ML, goals are to classify samples according to categories or score them 

according to a range of real values (Bishop, 2006). Data samples are required to be annotated 

(mostly by human raters). Oftentimes, input-output mappings have to be collected and created. 

Then, a particular learning algorithm is selected. A common distinction is between shallow 

and deep ML algorithms. Shallow ML algorithms take a set of inputs and essentially produce 

a combination of these inputs (Marsland, 2015). Examples of shallow ML algorithms are 

(multinomial) Naïve Bayes, support vector machines (SVM), or (multinomial) logistic 

regression. Naïve Bayes estimates the probability of a category based on Bayes’ rule (prior 

probabilities and given evidence). Support vector machines classifier/regressor seeks to 

maximize the decision margin across categories in a higher dimensional space. Logistic 

regression is essentially a linear model with an activation function (non-linear) (find a more 

detailed discussion with science education focus here: Wulff et al., 2020; Zhai, Yin, et al., 

2020, or for general discussion here: Bishop, 2006; Marsland, 2015).  

 

However, while these shallow algorithms have proven effective in many problems, ML 

research has seen a surge of interest into deep ML algorithms where initial features are 

progressively transformed into derived features (Marsland, 2015). Deep ANN architectures 

have been found to excel in vision and language processing (Goldberg, 2017; M. Mitchell, 

2020), and increasingly replace shallow ML architectures. Even simple ANN such as the 

multilayer perceptron (a kind of hydrogen atom for artificial intelligence research, Engel 

& van Broeck, 2001) are capable to model arbitrary (smooth) functional relationships 

(“universal approximation theorem”) even with only one layer and non-linear activation 

(Engel & van Broeck, 2001; Marsland, 2015). It is, then, important to know how to setup the 

ANN (number of nodes and number of layers). Also, it is desirable to know the amount of 

training data necessary to train the network. Unfortunately, neither the setup nor the amount 

of training data can be specified a priori with much certainty (Marsland, 2015). Both depend 

largely on the problem at hand. Moreover, some problems require different architectures. For 

example, language processing is inherently sequential and characterized by long-range 

dependencies (Alvarez-Lacalle, Dorow, Eckmann, & Moses, 2006). Specific ANN 

architectures such as recurrent neural networks, long short-term memory networks, or 

transformer architectures have been devised to cope with these requirements (Goldberg, 2017; 

Vaswani et al., 2017). Pictorial data was found to be processed effectively with convolutions, 

hence convolutional neural networks were designed. Essentially, these different architectures 

specify the information flow in the networks with reference to the input and output data. The 

more complex these network architectures become, the more difficult it is to retrieve 

                                                 
1 Reinforcement learning and semi-supervised learning are not further considered here, but will likely become 

increasingly important in educational fields, see: M. Mitchell (2020). 
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information on the ML model decisions, which raises the “black-box” problem that is 

addressed in research on explainable AI.  

 

Supervised training shallow and deep ML algorithms requires a loss function (performance 

indicator) that attributes how far off the actual ML algorithms output is in reference to the gold 

standard label provided by the annotated training dataset. Given this loss information, an 

optimization procedure assures that this information is passed through the architecture to 

update parameters or weights in the ML model to reach a final model. In ANNs oftentimes a 

gradient-based optimization procedure is utilized. The learning procedure is controlled by 

hyperparameters (e.g., amount of update for the weights, given a certain loss). These have to 

be set in advance of the learning. The more hyperparameters there are, the more combinations 

of hyperparameters have to be tested in order to find an optimal hyperparameter configuration. 

In supervised learning, cross-validation seeks to illuminate generalizability of the trained ML 

model. As such, researchers hold back a test dataset from the beginning. This test dataset is 

then used to estimate to what extent the trained ML model can predict the unseen cases, hence 

indicate how well the ML model generalizes beyond the training data. Moreover, a validation 

(sometimes called development) dataset need to be extracted from the training dataset as well, 

if different hyperparameter configurations are tested. A common challenge with cross-

validation is data leakage, where information from the test data leaks into the training regime, 

causing replicability failures in ML (Kapoor & Narayanan, 2022). Researchers need to make 

sure this does not happen for otherwise inflated fit statistics might result. Finally, in supervised 

learning, human-machine agreement is oftentimes used as an evaluation criterion for model 

performance (assuming the humans agreed in the first place). Depending on the goal 

(classification, regression) different agreement metrics are available such as precision, recall 

for classification, and mean squared distance for regression. 

  

Unsupervised ML, on the other hand, seeks to approximate the probability density of data, 

group or cluster similar samples, or reduce the dimensionality of a dataset (Bishop, 2006). 

Conveniently, no human annotation of the data samples is required to apply unsupervised ML 

algorithms. This spares resources and allows the processing of datasets of unwieldy sizes. 

Unsupervised ML algorithms comprise procedures for probability density estimation (latent 

Dirichlet allocation, LDA), clustering (e.g., k nearest neighbors, kNN) and dimensionality 

reduction (latent semantic analysis, LSA). LDA is a generative probabilistic model to extract 

topics in text documents (Blei, Ng, & Jordan, 2003). KNN is an algorithm that assigns a 

decision boundary based on the spatially closest neighbors in input space (Marsland, 2015). 

LSA is a method in natural language processing (NLP). In LSA, the input space is reduced in 

dimensionality by singular value decomposition of the document-term-matrix, and this lower-

dimensional representation is used as a new feature vector where informative similarities can 

be calculated by algebraic means (Deerwester, Dumais, Furnas, Landauer, & Harshman, 

1990). Though data requirements (i.e., annotation efforts) in unsupervised ML are 

advantageous compared to supervised ML, model validation is oftentimes more difficult. For 

example, the number of clusters, topics or dimensions have to be chosen by the researcher 

without much theoretical guidance. This poses the requirements to make ablation studies, e.g., 

systematically vary the number of clusters and monitor differences and similarities in outputs. 
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Besides supervised and unsupervised ML, meta learning or transfer learning are other 

promising learning approaches in ML. Brazdil, van Rijn, Soares, and Vanschoren (2022) 

differentiate between algorithm selection, hyperparameter optimization, pipeline 

optimization, and few-shot learning. Few-shot learning became particularly relevant in the 

context of deep ANNs (Ruder, 2019). ML researchers noticed a phenomenon called 

“catastrophic forgetting” with ANNs (McCloskey & Cohen, 1989). After training an ANN on, 

say, a simple calculation problem, it would be possible for the ANN to “forget” (i.e., decrease 

performance) its capabilities after having been trained on another, slightly different, problem. 

In transfer learning and few-shot learning, ML models are sought to be trained in a way to 

generalize across problems, i.e., transfer their knowledge to the new problem. To do so, in a 

phase called generative pre-training, a backbone ML model is trained to appropriately capture 

the structure (e.g., correlations) in language or images (Radford, Narasimhan, Salimans, & 

Sutskever, 2018). It is then the goal to further train (fine tune) the ML model with examples 

from the new problem (Wang, Yao, Kwok, & Ni, 2020). For language and vision ML models 

it was shown that prior training on large databases could boost performance on novel tasks 

and even reduce the data requirements to reach a certain performance (Ruder, 2019). 

 

Applications of ML in science and science education 

In the natural sciences, the system AlphaFold can count as a milestone in the application of 

ML and an exemplary case of how to apply ML (deep learning in particular). AlphaFold is an 

ML-based system that generates the spatial structure of a protein based on the sequence of 

amino acids, a problem known as protein folding (Jumper et al., 2021). Some experts judged 

this problem to be unsolvable without use of ML methods. AlphaFold now reaches accuracies 

on par with experimental methods, however, without the excess of resource requirements that 

are necessary to determine the structure via experiments. Training data comprised a structured 

database in which given amino acid sequences were paired with the respective 3D protein 

structures. Test data were newly determined (unseen) protein structures; these had to be 

predicted given the amino acid sequence. Other important applications of ML in science (see 

Table 1) are in cosmology, quantum physics, materials properties prediction, and elementary 

particle physics, where new insights could be gained, or calculations and simulations became 

possible (Carleo et al., 2019; Cranmer et al., 2020; Joss & Müller, 2019; Udrescu & Tegmark, 

2020). For example, a supervised ML approach was used to efficiently determine the red shift 

of distant galaxies based on photometric data (Kind & Brunner, 2013). Spectroscopic analyses, 

which yield exact red shift values, are resource intense, hence the determination of red shift 

values based on photometric data is considered a valuable resource for researchers (Carleo et 

al., 2019). Generalizability in these red shift analyses is considered a challenge, because it is 

unclear to what extent the training data is representative for later applications in the field. 

Potentials of transfer learning are considered promising advancements to address these 

challenges (Carleo et al., 2019; Leistedt, Hogg, Wechsler, & DeRose, 2019). In quantum 

physics, ML is applied to address the “Quantum Many-Body Problem”. In this problem the 

positional probability density for multiple quantum particles such as electrons should be 

estimated (Carleo et al., 2019). It could be shown, among others, that ANNs retrieve and store 

information for quantum entanglement of electrons rather. Also simulations of quantum 

systems could be improved, e.g., by efficient sampling through ML models (Carleo et al., 

2019). ML, and ANNs in particular, have also used to predict boiling points of fluids more 
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accurately compared to mere linear models such as multiple regression (Joss & Müller, 2019). 

Finally, ML is of crucial importance in elementary particle physics. Unsupervised and 

supervised ML approaches are used in conjunction to reduce large datasets of particle 

collisions (trigger) (Carleo et al., 2019).  

 

In science education, a wealth of studies used ML approaches to answer novel research 

questions and extend research capabilities (Zhai, Yin, et al., 2020). Applications cover 

assessment of diverse contents and scientific practices. We examine areas where ML offers 

potentials and pose challenges along the following recurring themes in the ML-based science 

education literature: 

(1) Extending the inquiry and discovery capabilities with ML 

 (1a) Information extraction in complex datasets 

 (1b) Model validation 

 (1c) Automating assessment and feedback 

(2) Extending the research process and capabilities in science education with ML 

 

Table 1: Application of ML in science and science education, grouped by ML approaches used 

and specific goals. 
Approach Supervised ML Unsupervised ML 

Goal, Task 

/ 

Domain 

Regression Classificatio

n 

 

Discovery Clustering Approximation 

 

Natural 

science 

Predict red shift 

on cosmic 

images 

(Carleo et al., 

2019); Predict 

boiling points of 

fluids (Joss 

& Müller, 2019) 

Classify 

relevant 

events in 

particle 

collisions 

(zit. in: 

Carleo et al., 

2019) 

Extract 

laws/symmetries/re

gularities in 

synthetic or real data 

(AIFeynman, AI 

Poincaré; (Y. Liu et 

al., 2022; Udrescu 

& Tegmark, 2020) 

Clustering of stars; 

Genetic structures in 

DNA micro arrays 

(Hastie, Tibshirani, 

& Friedman, 2008) 

 

Fast 

approximation/sam

pling for 

simulations (Many-

Body quantum 

systems, elementary 

particle collisions); 

Representations of 

molecule structure 

(Gómez-

Bombarelli, 2017) 

Science 

education 

Scoring of 

argumentation 

quality in 

learner 

responses; 

scoring of utility 

value in essays  

(Zhu et al., 

2017; Beigman 

Klebanov et al., 

2017) 

Classification 

of verbs to 

assess 

conceptual 

change in 

physics  

(Yan, 2014)  

Identify neural 

activation patterns 

in learner brain for 

physics concepts 

(Mason & Just, 

2016) 

Grouping of learner 

responses with 

reference to their 

estimation of 

generality 

(Rosenberg & Krist, 

2021) 

 

 

 

 

Representation of 

test and terms in 

word vectors  

(Sherin, 2013; 

Wulff et al., 2022) 

 

(1) Extending the inquiry and discovery capabilities with ML 

The inquiry process and capabilities lie at the core of scientific disciplines. In empirically 

oriented disciplines, the data-processing capabilities and the validity of the data models are 

central concerns around the inquiry and discovery capabilities: 

 

(1a) Information extraction in complex datasets 

A widely recognized potential of ML for science education is the capacity to extend 

assessment by means of analyzing complex data formats such as language-based responses 

(Zhai, Yin, et al., 2020). Given that competencies are conceptualized as complex, context-

dependent dispositions and science education researchers long argued to extend assessment 
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formats to include knowledge-in-use aspects, ML can potentially enhance effective and 

efficient analysis of such assessments (Maestrales et al., 2021). In particular, assessment 

formats such as closed-form questions (e.g., multiple choice items) were criticized to lack 

capabilities to adequately measure complex, procedural cognitive abilities (Haudek, Prevost, 

Moscarella, Merrill, & Urban-Lurain, 2012; Martinez, 1999). Moreover, human coding of 

constructed responses requires resources and is error prone due to expertise differences for the 

raters, fatigue, and other implicit biases (Zehner, Sälzer, & Goldhammer, 2016). A promise of 

ML methods is to compensate for some of these drawbacks, because it is a principled, 

computer-based approach. Early assessments and analysis of constructed responses used rule-

based procedures that do not contain ML aspects. Haudek et al. (2012) used lexical analyses 

to successfully group learners explanations for acid-base behavior in biological systems. 

Nehm and Härtig (2012) defined rules to extract key concepts in learners responses for 

evolution, and found that these rules were sufficient for automatically scoring the responses 

with reference to key concepts. Later studies employed ML-based tools to score and classify 

responses. O. L. Liu et al. (2014) used a concept-based coding with the help of the program c-

rater (similar approach in: Donnelly, Vitale, & Linn, 2015). Maestrales et al. (2021) trained 

ML algorithms to score students’ constructed responses to assess chemistry and physics 

learning. Mostly, these studies find that human-machine agreement is substantial and thus 

automated coding of constructed responses is possible with some caveats. For example, 

Maestrales et al. (2021) reported that classification performance (human-machine agreement) 

for responses decreased when specific vocabulary in chemistry and physics was present. They 

hypothesize that the learner responses in the training data had less formal vocabulary. This 

potentially points to a problem of generalizability, similar to the remarks on representativeness 

of red-shift data in the physics example above. 

 

While typical constructed responses are rather short (on average 1 to 3 sentences), ML can 

also be used to analyze entire documents such as papers or essays. Odden, Marin, and Rudolph 

(2021) analyzed 100 years of research papers in the journal Science Education, overall some 

5577 papers, with an unsupervised ML approach. This dataset surpasses typical review studies 

due to resource limitations. They used LDA to find topics in the papers. The authors identify 

the overarching themes: “science content topics, teaching‐focused topics, and student‐focused 

topics,“ and track the occurrence of these themes over the 100 years in the journal’s existence. 

Using this ML algorithms would also allow the researchers to examine relationships of topic 

trends with covariates such as societal discourses or journal editors at the time. Beigman 

Klebanov, Burstein, Harackiewicz, Priniski, and Mulholland (2017) used ML in conjunction 

with NLP to assess utility-value essays of students in biology. They report that NLP could be 

used to extract features and ML could be used to accurately score the essays.  

 

To evaluate accuracy of supervised ML models, Cohen’s kappa is often used as a measure for 

chance-corrected agreement between human raters or between human and machine. Typical 

agreements range from .55 to 1.00 (O. L. Liu, Rios, Heilman, Gerard, & Linn, 2016). 

However, Cohen’s kappa – as a single score – is rather opaque on specific classification 

problems that might occur with single categories and other performance metrics are also 

important to consider. For example, precision, recall, F1 (as the average of precision and 

recall), or area under curve (AUC) yield diagnostic information on the success to single out 
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specific categories. Also, the confusion matrix yields valuable information where systematic 

disagreements might occur between human and machine. Further intricate challenges await 

when more than two raters are present or the categories can overlap with each other. At 

present, coding in science education research focuses on sentence-level coding units without 

overlapping or hierarchically nested categories. While this makes coding easier for 

researchers, this does not necessarily recognize the complex structure of language 

(compositionality, hierarchy, and recursion) and cognitive processes more generally. Another 

challenge relates to the robust finding in essay scoring that essay length and essay score are 

significantly positively correlated (Chodorow & Burstein, 2004). Carpenter, Geden, Rowe, 

Azevedo, and Lester (2020) and Krüger and Krell (2020) also found this effect in their studies 

in science education. Researchers who assess constructs with constructed responses need to 

monitor such correlations. Given that text length is a surface feature of constructed responses, 

researchers then need to find a way to control for text length and find more informative 

features that explain quality. 

 

Besides language, other types of complex data such as images, log-data, or eye movement are 

increasingly analyzed with ML algorithms by science education researchers. Zhai, He, and 

Krajcik (2022) used graphical representations and constructed responses to assess modelling 

competencies of students. They found that an ANN could imitate the human coding with 

substantial agreement. Küchemann, Klein, Becker, Kumari, and Kuhn (2020) showed that 

eye-tracking data could be used as a feature in ML models to predict success in a kinematics 

assessment. Interestingly, the ANN performed worse compared to more shallow ML models, 

which points to the necessity for science education researchers to considerately chose their 

ML models in reference to the problem at hand. In sum, ML can be used to process a variety 

of information and even integrate different kinds of information in science education research. 

 

(1b) Model validation 

While the capacity of ML models to extract information from complex data is of great value 

for science education, it is equally important to assure that the models allow for valid 

inferences (Zhai, Yin, et al., 2020). This is all the more relevant, since ML models such as 

ANNs can approximate arbitrary smooth function and researchers need to assure that the 

model picks up on relevant features, where human raters oftentimes lack the capacity to 

systematically analyse the datasets such as in the case for boiling point prediction of fluids 

where up to hundreds or thousands of molecule descriptors might be integrated to reach 

accurate predictions (Joss & Müller, 2019). Validation of ML models is oftentimes more 

encompassing compared to the procedure known for stochastic data models where (among 

others) fit indices are calculated and compared (Breiman, 2001).  

 

To validate ML models, science education researchers used several criteria such as (a) human-

machine agreement as an indicator for model validity, (b) correlations with covariates, (c) 

important features for model decisions, and (d) cross-validation to assess generalizability of 

the ML model. (a) To determine human-machine agreement, ML researchers ground their 

work in established theoretical frameworks in science education. For example, Krüger and 

Krell (2020) examined modelling competence according to an established modelling 

framework that distinguishes five competencies related to modelling. Human-machine 
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agreement of the ML models ranged from acceptable to substantial. Similarly, studies on 

argumentation ground their study in respective frameworks on argumentation structure (Zhu 

et al., 2017). These frameworks are used to guide human annotation/coding to classify the data 

into distinct categories. (b) Besides human-machine agreement Krüger and Krell (2020) also 

used covariates to evaluate validity of model decisions. For example, they found that some 

ML algorithms’ decisions correlated with external criterion text lengths which, to some extent, 

raised validity concerns. (c) Analysis of important decision features can enhance transparency 

of ML model decisions and thus establish validity. Wulff, Mientus, Nowak, and Borowski 

(2022) determined attribution scores of their ML model to find relevant features that the model 

used for classifying physics teachers’ sentences into categories that were posited by the 

reflection-supporting model. They found that certain words were predictive for elements in 

the reflection-supporting model (see also: Krüger & Krell, 2020). (d) To evaluate 

generalizability through cross-validation, mostly the dataset is split into training, validation, 

and test data, and performance of the ML model on unseen test data is assessed (Wulff, 

Mientus, et al., 2022; Zhai et al., 2022). Researchers conclude that the ML model generalizes 

well, once performance on the unseen test dataset is substantial. However, less clear are the 

principles or rules that the ML model learned which allow it to generalize from the training 

examples, which is an important problem to address in future research. 

 

An important challenge is the question for appropriate gold standards. ML models, most 

naturally, almost never achieve full agreement, because the human raters disagree in the first 

place (sometimes substantially so). The root causes for this might lie in the insuffiency of the 

theoretical framework in the first place. Theories in social sciences lack the mathematical rigor 

of physics theories, because the phenomena that social scientists seek to model and explain 

are more complex to begin with (Halevy et al., 2009). How can we be certain that the theories 

are appropriate? ML might play an important role in improving theory building via data-

centered, unsupervised means in the future. However, as of now, guiding ML models on the 

basis of insufficient theoretical frameworks introduces uncertainty for determining gold 

standards. Moreover, the theoretical frameworks have to be operationalized and human raters 

have to be trained appropriately to correctly utilize the theory to classify examples. Questions 

of human raters’ expertise, prior experiences, and situational determinants (e.g., fatigue) need 

to be addressed to ascertain how valid the coding process is, and, thus, determine to what 

extend we can expect the ML model to reach full agreement with the human raters. Next, the 

researchers specify with their choices of ML algorithms the specific hypothesis space to be 

considered. E.g., some ML algorithms are well versed to cope with small data and non-

linearities. Again, these decisions constrain the possibility for perfect agreement with the gold 

labels, and make it more difficult to assess model validity. Furthermore, while generalizability 

is tested through performance of the ML model on unseen data, there is oftentimes no formal 

justification for the particular train-test split of the dataset. Generalizability then means 

performance expectation, given a randomly sampled data point from the representative 

sample. Research with the perceptron more rigorously determined generalizability criteria, 

e.g., through introduction of related but novel reasoning tasks (Engel & van Broeck, 2001). It 

is unclear what such a more rigorous conceptualization of generalizability would look like in 

science education research, because the theoretical frameworks are necessarily more fuzzy – 

given the complexity of the processes and phenomena under study. 
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Model validation for unsupervised ML can be even more challenging. For example, 

determining the hyperparameter configuration, e.g., the number of clusters, the number of 

dimension, or the number of topics, requires trade-offs between interpretability and sparsity. 

Sherin (2013) systematically varied experimental parameters to find a suitable number of 

topics in students’ transcribed interviews that relate to explanations of the seasons. He 

contends that no definite solution for this problem of finding a suitable number of topics exists 

in his case, however, that the systematic variation can provide some insights into topic validity. 

Typically, human interpretation of topics is necessary, e.g., through providing human raters 

the most representative words for a topic (Rosenberg & Krist, 2020; Wulff, Mientus, et al., 

2022). As in supervised ML, model validation in unsupervised ML involves substantial and 

critical involvement of human researchers to appropriately set up testing conditions and 

interpret outputs. Model validation, in consequence, can only function when humans and 

machines work in tandem (Sherin, 2013). 

  

(1c) Automating assessment and feedback 

Once ML models have been found to reach substantial human-machine agreement, automation 

is a major goal for many researchers. We also saw in the science examples above (Table 1) 

that automation and efficient analysis are important goals that can advance research 

capabilities. Zhai, Yin, et al. (2020) identifies automation as a crucial feature of ML in science 

education, i.e., outsourcing human decision making to machines. Many studies in science 

education (and science) refer to the resource argument in their motivation and implications. 

Resources can refer to human raters’ time, the costs associated with coding, or merely the 

availability of human raters. All of these resources are scarce in practice and should be spared 

if possible. Automation can furthermore enable researchers to more readily answer derived 

research questions. For example, reliable coding of argumentation elements allows researchers 

to filter parts of an argumentation and analyze these samples in greater depth – similar to the 

filtering in elementary particle collision data, such that researchers do not have to sift through 

the entirety of collision data. Lee et al. (2019) further highlight the elimination of human 

elements in coding processes and evaluation as a potential benefit of automation through ML. 

 

Automation can be achieved with supervised and unsupervised ML, however, science 

education researchers engaged with ML mostly employ supervised ML for purposes of 

automation (Zhai, Yin, et al., 2020). A rough estimate for reliability required to automate 

coding is a quadratic Cohen’s kappa value of .70 or above (Williamson, Xi, & Breyer, 2012). 

An early example of automation represents the study by Nehm and Härtig (2012). They 

extracted key concepts with specified rules and implemented EvoGrader as a web-based tool 

to allow fellow researcher to freely use their coding. They estimate the initial invest as 

substantial, however, after two years the invest should pay off. On the other hand, O. L. Liu 

et al. (2014) used a concept-based coding and concluded that substitution of human raters was 

not possible. Training of the machine would require 10k human ratings and not all concepts 

(including misconceptions) are documented in the manual appropriately. More generally, the 

question of dataset size is pertinent to ML research. Ha, Nehm, Urban-Lurain, and Merrill 

(2011) could show that 500 responses could be sufficient to train a reliable ML model. 

Similarly, Zehner et al. (2016) found acceptable performance for 249 samples. However, the 
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amount of data is crucially linked to the complexity of the problem at hand. Deep learning ML 

algorithms might raise the requirements for sample size. However, with transfer and meta-

learning these concerns might be mitigated (see below).  

 

Once a trained and validated ML model allows for automated assessment, individualized and 

adaptive tutoring systems can be implemented. Adaptive feedback and guidance is an 

important facilitator for learning, and ML models can be considered valuable parts of these 

systems to make them more flexible. The ability of ML models to process and analyze 

language input is among the most central features. For example, Donnelly et al. (2015) used 

ML models to automatically score thermodynamics essays and adaptively choose guidance 

sentences for the learners. Interestingly, learners with lower prior knowledge benefitted more 

compared to other learners. Similarly, Zhu et al. (2017) could show for 16 items for climate 

change that ML models reach substantial human-machine agreement. The ML model could 

then be used to adaptively choose a suitable feedback sentence for learners which had a 

positive impact on post-test scores. Unsupervised ML such as LSA has been used to 

implement tutoring systems that enact dialogs with learners. Graesser et al. (2004) defined 

curriculum scripts to successfully guide learners to solve physics problems in the AutoTutor 

(Person & Graesser, 2002).  

 

(2) Extending the research process and capabilities in science education with ML 

Besides more specific potentials of ML to extend the inquiry process in science education, ML 

can also enhance the overall research processes and capabilities in science education research. 

Science education research is oftentimes empirically grounded and seeks to test hypotheses 

with evidence gleaned from data. Digitization will all the more facilitate to gather data on 

learning and teaching processes (Baig et al., 2020), and – as argued above – ML will play a 

role to extract meaningful information from this data. Besides the data processing and 

information extracting capabilities of ML to enhance science education research, ML also 

offers novel capabilities to enhance the overall research process. Once ML models are trained 

and validated, they can be shared across research contexts and enhance collaboration. While 

this would also be true for established quantitative and qualitative science education research 

(e.g., linear regression models or coding manuals could also be shared across research sites), 

ML can ease collaborative inquiry processes. For example, reuse of coding manuals requires 

training of new raters who have to interpret the manual just as the previous raters did. This, 

however, is oftentimes inefficient and error prone.  

 

ML research can incite collaboration and model sharing. In the context of deep learning, ML 

offers novel potentials to share and collaborate trained ML models and further fine tune them 

in specific research contexts. In particular, ML researchers showed that pretrained deep 

learning-based language models can be reused in different contexts (transfer and meta-

learning). For example, Carpenter et al. (2020) used pretrained word embeddings to estimate 

reflective depth of learners‘ responses in a game-based learning environment and found that 

the pretrained embeddings outperformed other methods. Wulff, Mientus, et al. (2022) showed 

that pretrained language models could be used to accurately classify preservice physics 

teachers‘ written reflections. Specific deep learning architectures such as pretrained language 

models were found to be more performant compared to other deep learning architectures to 
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classify written reflections. Fine tuning of language models to specific tasks facilitated coding 

even for small samples (Wulff et al., 2022). The same pretrained language model architectures 

could then be utilized to inform the process of clustering sentences of preservice physics 

teachers writing about a physics lesson and extract interpretable topics (Wulff, Buschhüter, et 

al., 2022). The pretrained language model seemed to be particularly useful to extract robust 

topics. Fine-tuning pretrained language models even enabled ML models to perform steps of 

quantitative reasoning (Lewkowycz et al., 2022). In a few-shot learning paradigm through 

chain-of-thought prompting the ML model learned with reasonable accuracy to solve high 

school and university problems in mathematics and science. In a representative dataset the 

model solved one third of the tasks with providing the relevant reasoning behind the solution—

either in formal mathematical language and in natural language. To our estimation, this study 

marks a milestone in utilizing ML to advance science education research and offers exciting 

new ways for assessing students’ problem solving abilities via ML methods. 

 

Given these advancements, some posited that ML can replace human researchers. However, 

we suspect that the role of the human researchers will remain vital in research processes in 

science education. While robot scientists such as Adam show impressive progress for 

automating scientific research in specific applications such as yeast growth (King et al., 2009), 

it proves difficult to implement general robot scientists, because this would entail many more 

capabilities (such as implementing experimental setups in reality) than data collection, 

analysis, and reporting. Science education researchers argued for a human-machine tandem 

and integration, rather than replacement (Rosenberg & Krist, 2020; Sherin, 2013). Based on 

his findings, Sherin (2013) argued that the ML model can support the human analyst in a 

bootstrapping program that can help confirm a larger theoretical and empirical program, i.e., 

raise confidence in our theories. In this line, Rosenberg and Krist (2020) textured the further 

path of how human and machine analysts can be integrated. They used unsupervised ML to 

explore patterns and then human raters validated these patterns to find a robust coding manual 

for employing supervised ML. These studies highlight potentials for synergy effects between 

human and machine. 

  

Concluding remarks 

ML has offered science education researchers a valuable tool to enhance the inquiry process 

and research capabilities. Advancements in the field of ML research will continue to provide 

science education researchers novel potentials to answer their research questions and pose 

entirely new research questions. We have seen applications in all science disciplines (biology, 

chemistry, and physics) across different scientific practices (argumentation, explanation, 

reflection). ML has provided specific potentials to assess complex constructs that can be 

operationalized, among others, through language-based responses. Given the intricate 

relationship of language and science learning, ML offers a valuable modelling tool that can 

enhance assessment, automation, and, more generally, learning and teaching. If such 

assessment is valid and can be automated, researchers can share their instruments more easily 

and collaboratively improve them. 

 

Challenges await, however. We outlined that fundamental questions regarding model validity 

and generalizability remain unsolved. ML is an inductive learning approach and if humans 
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cannot understand the patterns that the ML algorithm picked up, theory development is 

hampered. We also touched upon some areas where bias can be introduced into the machine’s 

learning. For example, if large language models are trained on corpora such as the Internet 

and Wikipedia, and if these corpora are written by specific individuals (e.g., related to gender), 

this imposes problems of implicit biases. As a matter of fact, language models output similar 

biases as humans (Caliskan, Bryson, & Narayanan, 2017). Other biases relate to decisions 

made for the training of ML models (algorithms selection, loss-function selection, 

hyperparameters) and for reporting the findings (visualizations used).  

 

In consequence, implementing ML models in educational institutions, especially with children 

who form their identities, requires substantially more research efforts to assure that ML 

models’ decisions and feedback do not implicitly impose harm or disadvantage certain 

individuals. This is likely true for subjects other than the sciences as well. 
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