

Experimentieren mit digitalen Medien bereichern

Chemie

- D. Diermann¹, A. Banerji², J. Koenen¹, C. Egerer²
- ¹ Technische Universität München; ² Universität Potsdam

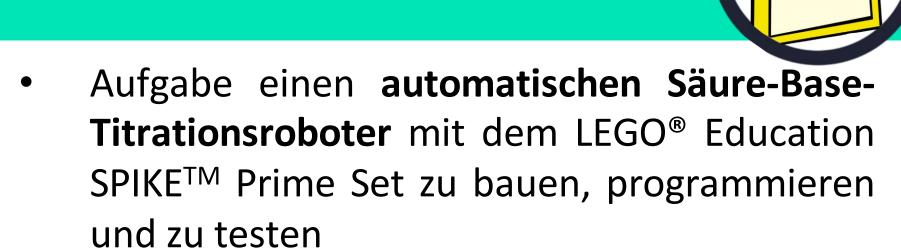
Ausgangslage

- Experimentieren mit verschiedenen Arbeitsschritten (vgl. Teilprozessansatz) ist zentral im Chemieunterricht, erfordert aber auch verschiedene Kompetenzen (Abd-El-Khalick, 2004; Sieve & Schanze, 2015)
- Lehrkräftefortbildungen sind wirksame Maßnahmen (vgl. Timperley, Wilson, Barrar & Fung, 2007; Yoon et al., 2007; Hattie, Beywl & Zierer, 2014; Lipowsky & Rzejak, 2017, 2019), um digitale Medien und die fachspezifische Arbeitsweise des Schülerexperiments gewinnbringend zu verbinden
- Poster zur **DigiProMIN** Chemie Fortbildung zum Thema "digital gestütztes Experimentieren"

Fortbildungskonzept

- Fokus auf ausgewählten digitalen Medien beim Experimentieren (vgl. Abbildungen)
- Arbeit mit Best-Practice-Beispielen und eigene Erstellung digitaler Medien
- Fokus auf **Diskussionsphasen** zum reflektierten Erfahrungsaustausch
- Rahmenbedingungen: Präsenzfortbildung im Tagesformat (ca. 7 h) im Laborsetting

Rollenwechsel: From "user" to "producer"


Theoretischer Titrationsroboter Input

DEAN

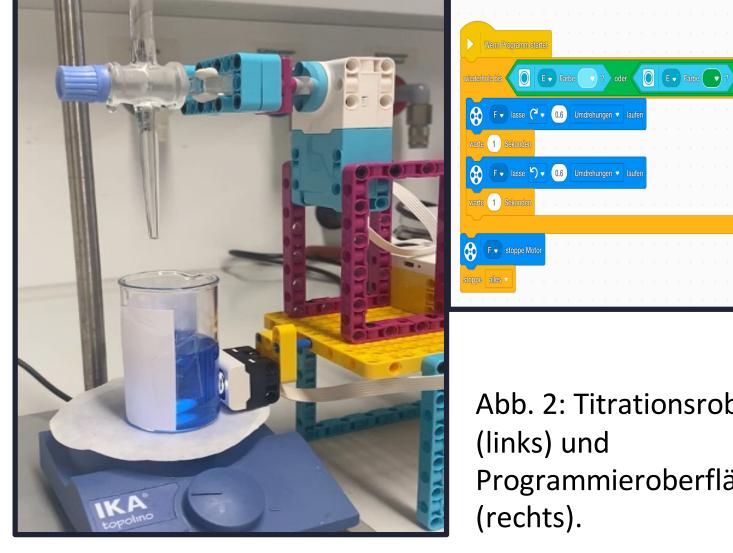

Diskussion & Reflexion

Abb. 1: Schematische Darstellung des Fortbildungsablaufs

Titrationsroboter

- Automatisierung Robotik und Chemieunterricht
- Lernbegleitung durch einen DEAN ("user") und Fortbildungsteam als Lerncoaches

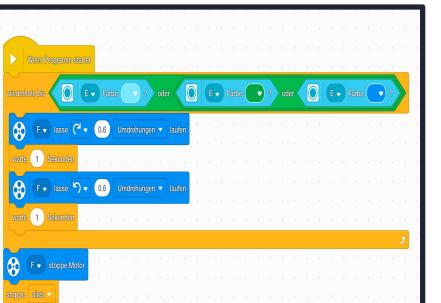


Abb. 2: Titrationsroboter Programmieroberfläche

Ausgewählte Lernziele

- mit Hilfe des LEGO® SPIKETM Prime Sets einen automatischen Titrationsroboter aufbauen und programmieren.
- erläutern, wie informatische Grundprinzipien im Chemieunterricht behandelt werden können.
- mit Hilfe von PowerPoint interaktive eBooks als Bildschirmpräsentationen erstellen und verschiedene digitale Medien (Animationen, Videos, Lernspiele) begründet einbinden.
- diskutieren, inwiefern digitale Medien verschiedene Phasen des Experimentierprozesses unterstützen können.
- → Orientierung an Kompetenzen des **DiKoLAN** (Becker et al., 2020) und des **DigCompEDU** (Redecker, 2017)

DEAN (= Digitale **Experimentieranleitung)**

- Entwicklung eines interaktiven eBooks (in PowerPoint) zur Unterstützung des gesamten Experimentierprozess ("producer")
- Fortbildungs-DEAN zu hilfreichen PowerPoint Features und Erstellungsvorschlägen
- Mögliche Integration Videos, von Animationen, Lernspielen usw.

Abb. 3: Screenshot aus dem Fortbildungs-DEAN.

Diskussion

- Konzeption anhand empirisch validierter Prinzipien (vgl. Emden & Baur, 2017; Lipowsky & Rzejak, 2012, 2019; Sieve, 2017), z. B. aktive Teilhabe, Kollaboration durch Kleingruppenarbeit, Arbeit mit konkreten Materialien und spezifischen digitalen Medien, Einteilung in Vermittlungs-, Erarbeitungs- und Reflexionsphasen
- Didaktischer Doppeldecker: Lehrkräfte arbeiten zunächst mit einem DEAN zum automatisierten Titrationsroboter ("user") und behandeln hiernach die eigene Erstellung eines DEANs aus der Herstellungsperspektive ("producer")

steckbrief!

Evaluation und Weiterentwicklung

Evaluation und Weiterentwicklung (Design Based Research) auf Basis der "Unified Theory of Acceptance and Use of Technology" (vgl. Šumak & Šorgo, 2016) \rightarrow nähere Informationen auf Poster **P025**

Möglichkeit der Adaption der Fortbildung in zwei Teile zu den beiden digitalen Medien (je 3 - 4 h)

GEFÖRDERT VOM