GDCP-Jahrestagung 2024 Bochum

Modellierung von Blickbewegungen bei der Beurteilung der Divergenz von Vektorfeldern

Niklas Weiß, Yvonne Kretzer, Larissa Hahn, Pascal Klein und Stefan Klumpp

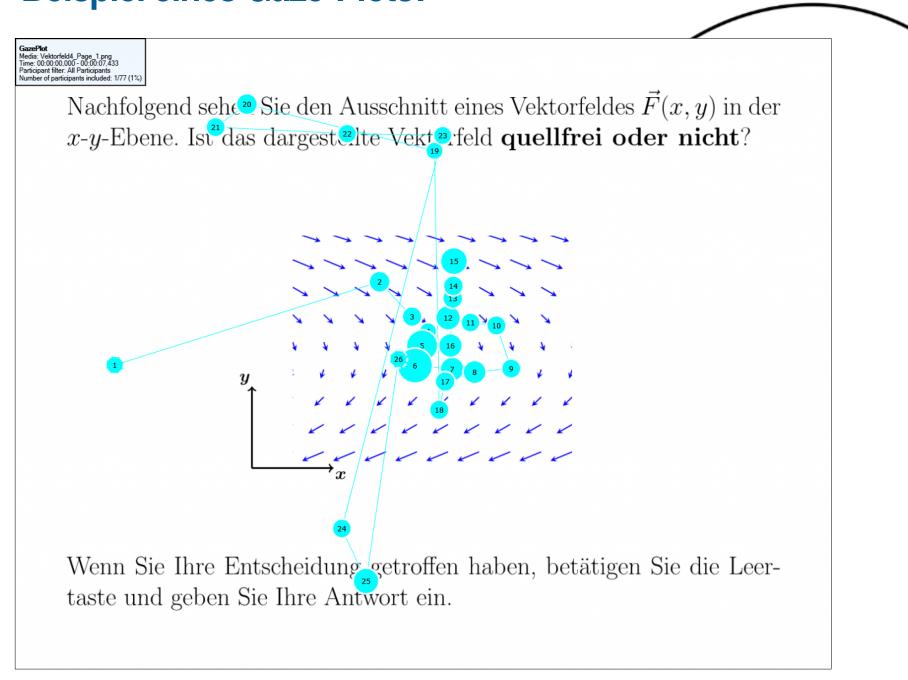
Universität Göttingen, Institut für Dynamik komplexer Systeme; E-Mail: niklas.weiss@stud.uni-goettingen.de

 \leftarrow

 \leftarrow

 \leftarrow

 \leftarrow


Übersetzung von Eye-Tracking Daten in Symbolische Dynamik und Simulation durch Markov-Chain

Experiment:

- 141 Physik-Studienanfänger:innen
- Erschließen Lerntext über Strategie der Vektordekomposition und des Vergleiches benachbarter Vektorpfeile
- Beurteilen die Divergenz von 8 Vektorfeldern
- Dabei werden die Blickbewegungen aufgenommen

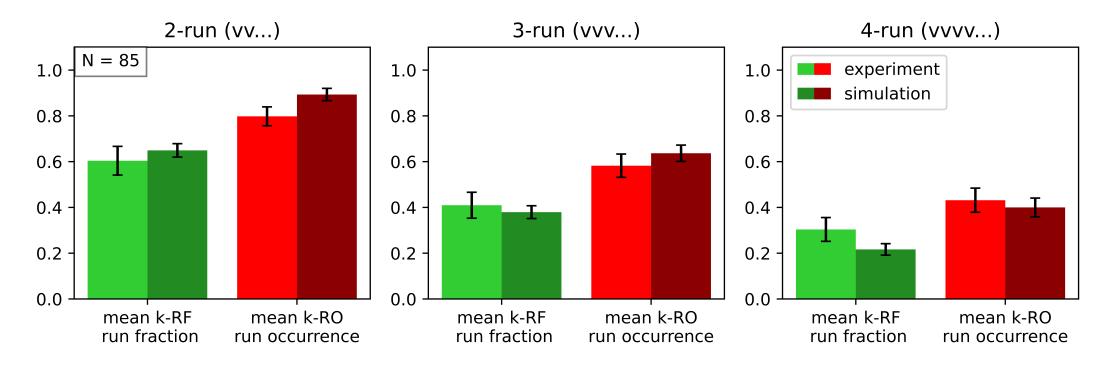
Siehe auch Klein et. al. 2021

Beispiel eines Gaze-Plots:

Darstellung der Sakkaden als symbolische Dynamik abhängig von der Richtung:

- "h" horizontal
- "v" vertikal
- "o" andere (other)
- "p" außerhalb Vektorfeldes

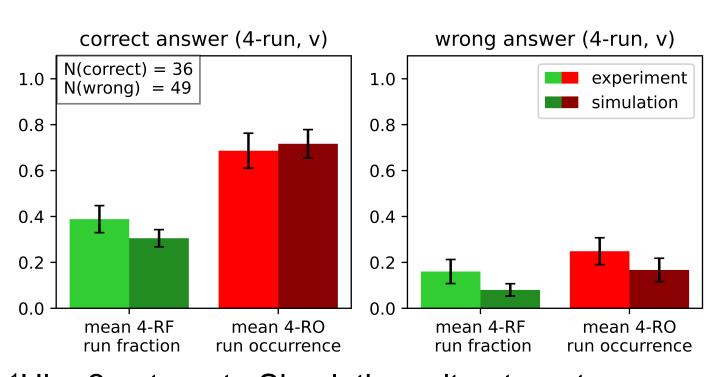
Im Beispiel: poooohhhohhvvvvvp



Errechnen von Übergangswahrscheinlichkeit Simulation über Markov-Chain Algorithmus

Ergebnisse

Unterschied zwischen simulierten und experimentellen Daten für VF4


Zunächst Fokus aus VF4 (aus Beispiel) und vertikale Komponente

2-runs unterrepräsentiert im Experiment

- 4-runs überrepräsentiert im Experiment
- → Hinweis, dass Studierende Strategie bewusst anwenden

Unterschied zwischen korrekter und inkorrekter Antwort für VF4¹

¹Hier 2 getrennte Simulation mit getrennten Transition Matrizen für korrekte/inkorrekte Antwort

Erhöhtes Aufkommen von 4runs bei Studierenden mit korrekter Bewertung der Divergenz

 → Indikator, dass Anwendung der Strategie korrekte Bewertung der Divergenz verbessert

Unterschied korrekter und inkorrekter Antwort in alle Vektorfelder

	h/v Vektor-	Unterschied	Unterschied	
	Komponenten	4 -RF h^2	$4\text{-}\mathbf{RF}\ \mathbf{v}^2$	
VF 1	Null/Variabel	$0.135 \ (0.097)$	$0.036 \ (0.097)$	
VF 2	Null/Konstant	-0.073 (0.117)	$0.071 \ (0.084)$	
VF 3	Variabel/Null	$0.126 \ (0.147)$	0.067 (0.041)	
VF 4	Konstant/Variabel	$0.086 \ (0.081)$	$0.244 \ (0.115)$	
VF 5	Variabel/Konstant	$0.102 \ (0.146)$	$0.106 \ (0.083)$	
VF 6	Null/Variabel	$0.095 \ (0.096)$	0.207 (0.089)	
VF 7	Konstant/Null	0.013 (0.120)	0.119 (0.101)	
VF 8	Variabel/Variabel	$0.236 \ (0.099)$	0.133 (0.139)	

4-RF in allen VF bei korrekter Beurteilung höher

Unterschied bei komplexeren Vektorfeldern größer

²Unterschied zwischen 4-RF bei korrekter und inkorrekter Antwort. Standardfehler in Klammern

Definition der Metriken

Analyse von "k-runs", Reihe von gleichen Sakkaden

- k-Run Occurrence (k-RO): Auftreten eines runs mit L\u00e4nge ≥ k
 Wert ist entweder "1" oder "0".
- k-Run Fraction (k-RF): Prozentsatz der Buchstaben, welche Teil eines runs mit Länge größer gleich "k" sind

Beispiel bei gleichen
Übergangswahrschein-
lichkeiten für "v":

symb. Dynamik	2-RO	2-RF	4-RO	4-RF
VVOVVOVV	1	6/6	0	0
VOVOVVV	1	4/6	1	4/6

Forschungsfrage:

Sieht man anhand der Daten,

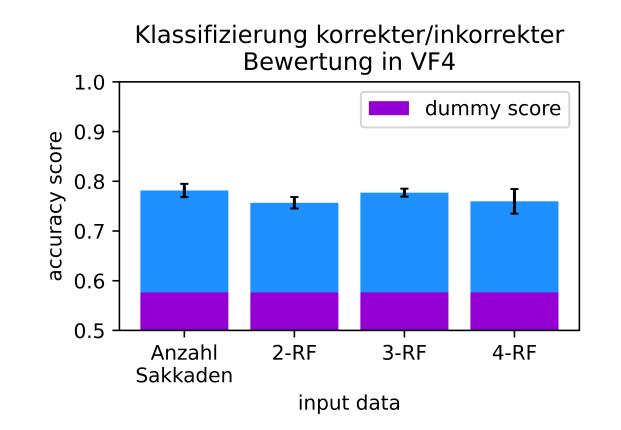
ob Studierende die Strategie

Vektorpfeile zu vergleichen?

Beurteilung der Divergenz?

Verbessert diese Strategie die

anwenden, benachbarte


Da in der Simulation die nächste Sakkade nur von vorheriger Sakkade abhängig ist, können durch den Vergleich der Simulation/Experiment Über-/Unterrepräsentation von runs analysiert werden.

Machine Learning

Kann aus den verschiedenen Metriken vorhergesagt werden, ob die Beurteilung der Divergenz korrekt ist?

Testen über Support Vector Machine-Klassifikator³ mit den verschiedenen Metriken als Input-Daten. Klassifiziert wird die korrekte/inkorrekte Bewertung der Divergenz.

Dummy score bei 0.576

→ Anteil aller inkorrekten Antworten

Alle Metriken erreichen ähnliche Accuracy, etwa 50% genauer als der dummy score.

³SVM mit Hyperparameter Optimierung und Cross-Valdiation