Augmented Reality (AR) in der Primarstufe – Entwicklung einer AR-gestützten Lehr-Lerneinheit zum Thema Elektrik

Augmented Reality (AR) in der Primarstufe –
Entwicklung einer AR-gestützten Lehr-Lerneinheit zum Thema Elektrik

Lauer, Luisa, Peschel, Markus, Marquardt, Matthias, Seibert, Johann, Lang, Vanessa & Kay, Christopher

Beitrag auf der GDCP-Jahrestagung 2019

Obwohl Elektrik überall in unserem Alltag eine große Rolle spielt, verfügen die meisten Schülerinnen und Schüler kaum über anschlussfähige Vorstellungen zu Elektrizität und damit verbundenen Größen und Phänomenen. Bereits im Sachunterricht der Primarstufe sollen im Sinne eines propädeutischen Zugangs zum Thema Elektrik grundlegende Begrifflichkeiten und Konzepte vermittelt werden. Die digitale Technik Augmented Reality (kurz AR) bietet in diesem Zusammenhang das Potential, durch Anreicherung des Blickfeldes der Lernenden den Kompetenzerwerb in den Bereichen „Naturphänomene mit Modellvorstellungen beschreiben“ (Fachkompetenz), „Experimentieren“(Methodenkompetenz) und „Zeichnen von Schaltskizzen“ (Repräsentationskompetenz) zu fördern. Die verschiedenen Einsatzmöglichkeiten von AR werden aufgezeigt, kritisch diskutiert und hinsichtlich ihrer Praktikabilität für den unterrichtlichen Einsatz bewertet.

Referenz:

Lauer, Luisa, Peschel, Markus, Marquardt, Matthias, Seibert, Johann, Lang, Vanessa & Kay, Christopher (2020). Augmented Reality (AR) in der Primarstufe –
Entwicklung einer AR-gestützten Lehr-Lerneinheit zum Thema Elektrik. In: S. Habig (Hrsg.), Naturwissenschaftliche Kompetenzen in der Gesellschaft von morgen. Gesellschaft für Didaktik der Chemie und Physik, Jahrestagung in Wien 2019. (S. 944). Universität Duisburg-Essen

Den Beitrag können Sie hier als pdf herunterladen.

Der gesamte Tagungsband, in dem dieser Beitrag erschienen ist, ist ebenfalls verfügbar: Tagungsband herunterladen

Augmented Reality als Werkzeug zur Verknüpfung des Periodensystems der Elemente mit dem Bohr’schen Atommodell

Augmented Reality als Werkzeug zur Verknüpfung des Periodensystems der
Elemente mit dem Bohr’schen Atommodell

Marquardt, Matthias, Seibert, Johann, Lauer, Luisa, Lang, Vanessa, Peschel, Markus & M. Kay, Christopher W.

Beitrag auf der GDCP-Jahrestagung 2019

Das Strategiepapier der KMK (2017) „Bildung in der digitalen Welt“ und insbesondere die Position der GFD (2018) verlangt die Einbindung digitaler Medien in den Fachunterricht – vornehmlich aus einer fach- und nicht mediendidaktischen Argumentation. Eine neue Möglichkeit, digitale Medien im Unterricht zu nutzen, ist Augmented Reality (AR).

Bisherige AR-Apps nutzen AR, indem sie Objekte (z.B. Moleküle) „im Raum“ darstellen, nutzt aber weder die AR-Possibilitäten noch werden dabei didaktische oder fachliche Funktion fokussiert. Aus diesem Defizit ergibt sich die fachdidaktische Überlegung (vgl. GFD 2018): Wie kann man AR mit seinen Potentialen im NW-Unterricht nutzen? Welche Lerninhalte bieten sich für Augmentierungen an?

Es wurde eine AR-App zum Periodensystem mit entsprechender Augmentierung entwickelt, in der die SchülerInnen den Aufbau des PSE herleiten. Sie ermitteln aus angezeigten/aufgmentierten Größen die Systematik und können ihre Ergebnisse in der Augmentierung selbstständig und visuell überprüfen.

Im Beitrag wird die App mit der fachdidaktischen Intention vorgestellt.

Referenz:

Marquardt, Matthias, Seibert, Johann, Lauer, Luisa, Lang, Vanessa, Peschel, Markus & M. Kay, Christopher W. (2020). Augmented Reality als Werkzeug zur Verknüpfung des Periodensystems der
Elemente mit dem Bohr’schen Atommodell. In: S. Habig (Hrsg.), Naturwissenschaftliche Kompetenzen in der Gesellschaft von morgen. Gesellschaft für Didaktik der Chemie und Physik, Jahrestagung in Wien 2019. (S. 948). Universität Duisburg-Essen

Den Beitrag können Sie hier als pdf herunterladen.

Der gesamte Tagungsband, in dem dieser Beitrag erschienen ist, ist ebenfalls verfügbar: Tagungsband herunterladen

AR-MEI-SE: Augmented Reality Multitouch Experiment Instruction in Science Education

AR-MEI-SE: Augmented Reality Multitouch Experiment Instruction in Science
Education

Seibert, Johann, Marquardt, Matthias, Lang, Vanessa, Lauer, Luisa, Peschel, Markus, Perels, Franziska, Huwer, Johannes & M. Kay, Christopher W.

Beitrag auf der GDCP-Jahrestagung 2019

Das Experiment als zentraler Bestandteil im Chemieunterricht und Schülerlabor kann mit einfachen Mitteln didaktisch reflektiert medial angereichert werden. Auf Grundlage dieser Aussage soll exemplarisch dargestellt werden, wie eine solche Anreicherung aussehen kann. Besonders die reine Versuchsanleitung ist dafür prädestiniert. Hierbei wird die analoge Experimentalanleitung als Trigger verwendet und mit interaktiven Overlays angereichert. Somit kann im Rahmen der individuellen Förderung und des selbstregulierten Lernens in beiden Richtungen unterstützt werden.

Referenz:

Seibert, Johann, Marquardt, Matthias, Lang, Vanessa, Lauer, Luisa, Peschel, Markus, Perels, Franziska, Huwer, Johannes & M. Kay, Christopher W. (2020). AR-MEI-SE: Augmented Reality Multitouch Experiment Instruction in Science
Education. In: S. Habig (Hrsg.), Naturwissenschaftliche Kompetenzen in der Gesellschaft von morgen. Gesellschaft für Didaktik der Chemie und Physik, Jahrestagung in Wien 2019. (S. 952). Universität Duisburg-Essen

Den Beitrag können Sie hier als pdf herunterladen.

Der gesamte Tagungsband, in dem dieser Beitrag erschienen ist, ist ebenfalls verfügbar: Tagungsband herunterladen

Augmented Reality Lab License 2.0

Augmented Reality Lab License 2.0

Lang, Vanessa, Seibert, Johann, Marquardt, Matthias, Lauer, Luisa, Peschel, Markus, Perels, Franziska, M. Kay, Christopher W. & Huwer, Johannes

Beitrag auf der GDCP-Jahrestagung 2019

Gerade im Anfangsunterricht ist das Kennenlernen der Laborumgebung unumgänglich. Aus diesem Grund wurde in einem Projekt ein AR-Laborführerschein entwickelt. In einer mit Augmented Reality angereicherten Lernumgebung sollen die SchülerInnen das Labor und seine Regeln erkunden und kennenlernen. Hierbei erhalten die Schüler über eine Augmented Reality zusätzliche Informationen über den getriggerten Symbolen im Labor. Neben den Hinweis-, Sicherheits- und Gefahrensymbolen erlernen die SchülerInnen den Umgang mit dem Bunsenbrenner, Brandbekämpfungs- und Erste-Hilfe-Maßnahmen. In diesem Lernszenario hat das Tablet die Funktion eines reinen Lernwerkzeugs zur Förderung kognitiver Prozesse in der aktuellen Unterrichtssituation. Im Zuge der Individualisierung wurden diese Materialien zusätzlich für den bilingualen Unterricht entwickelt, sodass gleichzeitig eine Sprachförderung im Experimentalunterricht stattfinden kann.

Referenz:

Lang, Vanessa, Seibert, Johann, Marquardt, Matthias, Lauer, Luisa, Peschel, Markus, Perels, Franziska, M. Kay, Christopher W. & Huwer, Johannes (2020). Augmented Reality Lab License 2.0. In: S. Habig (Hrsg.), Naturwissenschaftliche Kompetenzen in der Gesellschaft von morgen. Gesellschaft für Didaktik der Chemie und Physik, Jahrestagung in Wien 2019. (S. 956). Universität Duisburg-Essen

Den Beitrag können Sie hier als pdf herunterladen.

Der gesamte Tagungsband, in dem dieser Beitrag erschienen ist, ist ebenfalls verfügbar: Tagungsband herunterladen

Beschreibungen optischer Phänomene

Beschreibungen optischer Phänomene

Gierl, Katharina, Löffler, Patrick & Kauertz, Alexander

Beitrag auf der GDCP-Jahrestagung 2019

Das Beschreiben von Phänomenen ist Ausgangspunkt naturwissenschaftlicher Erkenntnis- und den damit verbundenen Modellierungsprozessen. Lernende müssen beim Beschreiben folgende drei Prozessschritte durchlaufen: Relevante Informationen selektieren, anhand des Vorwissens interpretieren und die Zusammenhänge in eine kohärente Struktur überführen. Merkmale der Beurteilung einer Beschreibung sind die Relevanz der ausgewählten Informationen, die Kohärenz dargestellter Zusammenhänge sowie die intersubjektive Prüfbarkeit der Interpretationen. In der Pilotierung wurden Beschreibungen Physikstudierender (n=16) und Physikdozierender (n=10) zu optischen Phänomenen kategorienbasiert analysiert und verglichen. Dabei wurden Intelligenz, Strategiewissen und Konzeptwissen jeweils mit einem Paper-Pencil-Test erfasst und als Kovariate berücksichtigt. Dieser Beitrag stellt die Ergebnisse der Pilotstudie vor.

Referenz:

Gierl, Katharina, Löffler, Patrick & Kauertz, Alexander (2020). Beschreibungen optischer Phänomene . In: S. Habig (Hrsg.), Naturwissenschaftliche Kompetenzen in der Gesellschaft von morgen. Gesellschaft für Didaktik der Chemie und Physik, Jahrestagung in Wien 2019. (S. 828). Universität Duisburg-Essen

Den Beitrag können Sie hier als pdf herunterladen.

Der gesamte Tagungsband, in dem dieser Beitrag erschienen ist, ist ebenfalls verfügbar: Tagungsband herunterladen

Förderung des ikonischen Modellverständnisses in Chemiestudiengängen

Förderung des ikonischen Modellverständnisses in Chemiestudiengängen

Bille, Veronika, Rumann, Stefan, Roelle, Julian, Opfermann, Maria & Schmuck, Carsten

Beitrag auf der GDCP-Jahrestagung 2019

Der Umgang mit Visualisierungen stellt eine zentrale Anforderung in Chemiestudiengängen dar und ist aufgrund der gefundenen prädiktiven Kraft des visuellen Modellverständnisses für den Studienerfolg (Dickmann, 2018) in der Allgemeinen Chemie in den Fokus gerückt.

Das Projekt widmet sich dem Einfluss des ikonischen Modellverständnisses auf Leistungen in der Organischen Chemie. Ikonische Modelle werden hierbei als Visualisierungen mit strukturellem Abbildungscharakter eines Referenzobjektes oder einer Theorie beschrieben. Studierende in der Anfangsphase haben häufig Schwierigkeiten bei der mentalen Übertragung zweidimensionaler Visualisierungen, zum Beispiel aus Lehrbüchern, in dreidimensionale Modelle. Zentrales Ziel der Studie ist, die Verbesserung der Studienleistungen in dieser Disziplin. Methodisch orientiert sich die Trainingsgestaltung hierbei am Lösungsbeispiel-Ansatz. Im Rahmen der Posterpräsentation werden erste Ergebnisse eines Trainings zur Förderung des ikonischen Modellverständnisses unter experimentellen Bedingungen vorgestellt.

Referenz:

Bille, Veronika, Rumann, Stefan, Roelle, Julian, Opfermann, Maria & Schmuck, Carsten (2020). Förderung des ikonischen Modellverständnisses in Chemiestudiengängen. In: S. Habig (Hrsg.), Naturwissenschaftliche Kompetenzen in der Gesellschaft von morgen. Gesellschaft für Didaktik der Chemie und Physik, Jahrestagung in Wien 2019. (S. 892). Universität Duisburg-Essen

Den Beitrag können Sie hier als pdf herunterladen.

Der gesamte Tagungsband, in dem dieser Beitrag erschienen ist, ist ebenfalls verfügbar: Tagungsband herunterladen

Erkenntnisprozesse in nicht experimentellen Untersuchungen

Erkenntnisprozesse in nicht experimentellen Untersuchungen

Bock, Benjamin, Schubatzky, Thomas & Haagen-Schützenhöfer, Claudia

Beitrag auf der GDCP-Jahrestagung 2019

Wenn man SchülerInnen fragt, was sie sich unter naturwissenschaftlichem Arbeiten vorstellen, so ist die Antwort häufig auf eine einzige Methode – die „naturwissenschaftliche Methode“ – reduziert. Lederman et al. (2013) gehen davon aus, dass dieser Umstand u.a. auf eine Überbetonung des klassischen experimentellen Designs im naturwissenschaftlichen Unterricht zurückzuführen ist. Derartige Designs sind jedoch bei weitem nicht repräsentativ für naturwissenschaftliches Arbeiten und sollten im Unterricht um andere „Arten“ ergänzt werden. Aktuell entwickeln und erproben wir deshalb eine Lernumgebung, bei der Lernende die Feinstaubbelastung einer mittelgroßen Stadt (Graz, A) mithilfe eines multivariaten Datensets analysieren. Dabei sollen Lernende informelle statistische Denkweisen anwenden. Die Analyse der ersten Erprobung fokussiert auf die Verläufe der Erkenntnisprozesse. Aufbauend auf einem selbst entwickelten Erkenntnisprozessmodell wurden die spezifischen Vorgangsweisen sowie die Integration kontextuellen Wissens bei den Untersuchungsverläufen der Lernenden analysiert.

Referenz:

Bock, Benjamin, Schubatzky, Thomas & Haagen-Schützenhöfer, Claudia (2020). Erkenntnisprozesse in nicht experimentellen Untersuchungen. In: S. Habig (Hrsg.), Naturwissenschaftliche Kompetenzen in der Gesellschaft von morgen. Gesellschaft für Didaktik der Chemie und Physik, Jahrestagung in Wien 2019. (S. 832). Universität Duisburg-Essen

Den Beitrag können Sie hier als pdf herunterladen.

Der gesamte Tagungsband, in dem dieser Beitrag erschienen ist, ist ebenfalls verfügbar: Tagungsband herunterladen

Konzeption eines interdisziplinären Moduls zur Erkenntnisgewinnung

Konzeption eines interdisziplinären Moduls zur Erkenntnisgewinnung

Tampe, Jana & Spatz, Verena

Beitrag auf der GDCP-Jahrestagung 2019

Im Rahmen des Lehramtsstudiums für die Fächer Biologie, Chemie und Physik werden der Prozess und die Methoden der naturwissenschaftlichen Erkenntnisgewinnung meist aus einer rein fachspezifischen Perspektive vermittelt. Für das ganzheitliche Begreifen – wie es beispielsweise durch „Scientific Literacy“ oder die KMK-Standards gefordert wird – ist jedoch ein interdisziplinärer Blick notwendig.

Für den neu strukturierten Lehramtsstudiengang an der TU Darmstadt wird daher ein Modul entwickelt, in dem die Studierenden in einem Seminar gemeinsam didaktische und methodische Aspekte der naturwissenschaftlichen Erkenntnisgewinnung erarbeiten und diese in einem praktischen Schulprojekt erproben.

Zur Konzeption des Moduls werden Lehramtsstudierende bezüglich ihres Vorwissens und ihrer Erwartungen an das Modul befragt. Diese Erwartungen werden mit der Einschätzung von den Fachdidaktik-Expert*innen aus den drei Disziplinen Biologie, Chemie und Physik abgeglichen. Auf dem Poster werden die Schlussfolgerungen für die Konzeption vorgestellt.

Referenz:

Tampe, Jana & Spatz, Verena (2020). Konzeption eines interdisziplinären Moduls zur Erkenntnisgewinnung. In: S. Habig (Hrsg.), Naturwissenschaftliche Kompetenzen in der Gesellschaft von morgen. Gesellschaft für Didaktik der Chemie und Physik, Jahrestagung in Wien 2019. (S. 896). Universität Duisburg-Essen

Den Beitrag können Sie hier als pdf herunterladen.

Der gesamte Tagungsband, in dem dieser Beitrag erschienen ist, ist ebenfalls verfügbar: Tagungsband herunterladen

Fächerübergreifender Transfer naturwissenschaftlicher Denk- und Arbeitsweisen

Fächerübergreifender Transfer naturwissenschaftlicher Denk- und
Arbeitsweisen

Golew, Sandra & Vorholzer, Andreas

Beitrag auf der GDCP-Jahrestagung 2019

Fächerübergreifendes Ziel naturwissenschaftlichen Unterrichts ist der Aufbau von Kompetenzen des naturwissenschaftlichen Arbeitens (vgl. Kompetenzbereich Erkenntnisgewinnung in den Standards für Biologie, Chemie und Physik). Es stellt sich jedoch die Frage, ob diese Arbeitsweisen in jedem Fach separat aufgebaut werden müssen, oder ob den Lernenden der Transfer zwischen den Fächern gelingt. Die vorgestellte Erhebung knüpft an einen von einer Schule organisierten Projekttag an, an dem ausgewählte Arbeitsweisen jeweils in Kontexten eines bestimmten Faches gefördert wurden (z. B. „Untersuchungen planen“ in Physik). 18 Wochen nach dem Projekttag wurde mit einem schriftlichen Test untersucht, inwiefern die Lernenden (N=161 Schüler*innen der Einführungsphase) die angestrebten Arbeitsweisen in Kontexten aus dem gleichen Fach und in Kontexten aus anderen Fächern anwenden können. Erste Ergebnisse deuten darauf hin, dass den Lernenden sowohl die Reproduktion als auch der Transfer zwischen den Fächern gelingt. Am Poster werden die Ergebnisse diskutiert und das weitere Vorgehen im Forschungsprojekt vorgestellt.

Referenz:

Golew, Sandra & Vorholzer, Andreas (2020). Fächerübergreifender Transfer naturwissenschaftlicher Denk- und
Arbeitsweisen. In: S. Habig (Hrsg.), Naturwissenschaftliche Kompetenzen in der Gesellschaft von morgen. Gesellschaft für Didaktik der Chemie und Physik, Jahrestagung in Wien 2019. (S. 836). Universität Duisburg-Essen

Den Beitrag können Sie hier als pdf herunterladen.

Der gesamte Tagungsband, in dem dieser Beitrag erschienen ist, ist ebenfalls verfügbar: Tagungsband herunterladen

Ist eine Erweiterung des Konstrukts NOS zu NOSIS sinnvoll? «Nature of Whole Science» versus Konsenslisten: Dekonstruktion von Emergenz?

Ist eine Erweiterung des Konstrukts NOS zu NOSIS sinnvoll?
«Nature of Whole Science» versus Konsenslisten: Dekonstruktion von
Emergenz?

Arndt, Laura, Billion-Kramer, Tim, Wilhelm, Markus & Rehm, Markus

Beitrag auf der GDCP-Jahrestagung 2019

Der auf einzelnen NOS-Facetten basierende EKoL-NOS-Test (Billion-Kramer et al., 2018), soll um weitere Vignetten gesellschaftlicher Aspekte im Sinne „ganzheitlicher Naturwissenschaft“ (Knowledge of the nature of Whole Science, KNOWS) erweitert werden (Allchin 2012). Diese Erweiterung soll enge gesellschaftliche Wechselwirkungen mit naturwissenschaftlichen Fragestellungen fokussieren und empirische Hinweise liefern, ob die gesellschaftliche Dimension von Nature of Science implizit vertreten ist, oder ob eine Konstrukterweiterung erforderlich ist. Im Anschluss soll mittels Strukturgleichungsmodellen geprüft werden, ob sich ein eindimensionales (Nature of Science mit gesellschaftlicher Dimension) oder mehrdimensionales Konstrukt abbilden lässt. Mit diesem Vorgehen wird der Fokus auf die Modellierung eines Strukturmodells des Wissenschaftsverständnisses als Teil des PCK Kompetenzaspektes angestrebt.

Referenz:

Arndt, Laura, Billion-Kramer, Tim, Wilhelm, Markus & Rehm, Markus (2020). Ist eine Erweiterung des Konstrukts NOS zu NOSIS sinnvoll?
«Nature of Whole Science» versus Konsenslisten: Dekonstruktion von
Emergenz?. In: S. Habig (Hrsg.), Naturwissenschaftliche Kompetenzen in der Gesellschaft von morgen. Gesellschaft für Didaktik der Chemie und Physik, Jahrestagung in Wien 2019. (S. 840). Universität Duisburg-Essen

Den Beitrag können Sie hier als pdf herunterladen.

Der gesamte Tagungsband, in dem dieser Beitrag erschienen ist, ist ebenfalls verfügbar: Tagungsband herunterladen