Liebigs Elementaranalyse im Kontext des Erwerbs von Wissen über NoS

Liebigs Elementaranalyse im Kontext des Erwerbs von Wissen über NoS

Kraft, Florian & Gröger, Martin

Beitrag auf der GDCP-Jahrestagung 2014

Das Lösen von Aufgaben im Physikunterricht erfordert oftmals eher mathematische als physikalische Kompetenzen. Der mathematische Kalkül verdrängt häufig das Anwenden physikalischer Prinzipien (Krause, 2013). Interessanterweise finden anderseits (quasi-) naturwissenschaftliche Methoden in Mathematikbüchern zunehmend Anwendung. In der Mathematikdidaktik ist dazu die Hypothese entstanden, dass Schülerinnen und Schüler im anschauungsgebundenen Unterricht eine empirische (quasi-naturwissenschaftliche) Auffassung von Mathematik entwickeln. Diese unterscheidet sich fundamental von der modernen abstrakten Hochschulmathematik (Burscheid & Struve 2009; Witzke 2009).
Im Vortrag sollen Zusammenhänge von Mathematik- und Physikanforderungen in Schulaufgaben mit Hilfe von Schulbuchbeispielen diskutiert werden und daraus Forschungsfragen für die jeweiligen Fachdidaktiken formuliert werden.

Referenz:

Kraft, F. & Gröger, M. (2015). Liebigs Elementaranalyse im Kontext des Erwerbs von Wissen über NoS. In: S. Bernholt (Hrsg.), Heterogenität und Diversität – Vielfalt der Voraussetzungen im naturwissenschaftlichen Unterricht. Gesellschaft für Didaktik der Chemie und Physik, Jahrestagung in Bremen 2014 (S. 319-321). Kiel: IPN.

Den Beitrag können Sie hier als pdf herunterladen.

Der gesamte Tagungsband, in dem dieser Beitrag erschienen ist, ist ebenfalls online verfügbar.

Physikstudierende individuell fördern – Evaluation eines Lernzentrums

Physikstudierende individuell fördern – Evaluation eines Lernzentrums

Haak, Inka & Reinhold, Peter

Beitrag auf der GDCP-Jahrestagung 2014

Studien aus der Physik- und Mathematikdidaktik haben gezeigt, dass sowohl Schüler, wie auch Erwachsene große Defizite beim Abschätzen von physikalischen Größen haben (Crawford, 1952; Corle, 1960, 63; Reys et al., 1982; Hildreth, 1983; Crites, 1992; Joram, 2005). Diese Ergebnisse konnten im Rahmen einer eigens durchgeführten Fragebogenerhebung bestätigt werden. Um ein besseres Verständnis für diese Ergebnisse zu gewinnen wurden Schülerinnen und Schüler in einer ergänzenden Interviewstudie Schätzaufgaben hinsichtlich verschiedener in der Sekundarstufe I relevanten physikalischen Größen (Masse, Länge, Temperatur, Zeit, Fläche, Volumen, Beschleunigung, Geschwindigkeit und Dichte) gestellt. Durch die qualitative Analyse der Interviews können die kognitiven Prozesse der Lernenden beim Schätzen und die von ihnen verwendeten Strategien identifiziert und nachvollzogen werden. Ebenfalls wurde das Vertrauen der Befragten in ihre eigenen Schätzungen untersucht und die Lernenden verschiedenen Typen von Schätzern zugeordnet.

Referenz:

Haak, I. & Reinhold, P. (2015). Physikstudierende individuell fördern – Evaluation eines Lernzentrums. In: S. Bernholt (Hrsg.), Heterogenität und Diversität – Vielfalt der Voraussetzungen im naturwissenschaftlichen Unterricht. Gesellschaft für Didaktik der Chemie und Physik, Jahrestagung in Bremen 2014 (S. 274-276). Kiel: IPN.

Den Beitrag können Sie hier als pdf herunterladen.

Der gesamte Tagungsband, in dem dieser Beitrag erschienen ist, ist ebenfalls online verfügbar.

“Mit Experimenten kann man Theorien beweisen” – NOS-Beliefs Studierender

“Mit Experimenten kann man Theorien beweisen” – NOS-Beliefs Studierender

Lembens, Anja & Weberndorfer, Christoph

Beitrag auf der GDCP-Jahrestagung 2014

Ein flexibler Umgang mit Mathematik in Physik wird als wesentlich für das Lernen und Verstehen der Wissenschaft Physik angesehen. Die mathematische Modellierung physikalischer Probleme stellt dabei eine zentrale Kompetenz dar, die seitens der Universitäten implizit vorausgesetzt, in der Schule jedoch nur im Mathematikunterricht gefordert wird. Eine Verankerung und spezifische Ausformulierung mathematischer Modellierungskompetenz im Rahmenlehrplan Physik (speziell der Sek. II) findet sich nicht wieder, obwohl die Mathematik und speziell die Mathematisierung als wesentliches Merkmal der Fachwissenschaft sowie des Unterrichtsfachs Physik bezeichnet werden. Der Vortrag stellt ein evaluiertes Modell vor, dass die mathematische Modellierung physikalischer Problemstellungen widerspiegelt. Auf Basis der qualitativen Inhaltsanalyse wurden mit der Think-aloud Methode erhobene Expertenlösungen zu unter-schiedlichen Problemstellungen systematisch ausgewertet. Neben Erkenntnissen zur mathematischen Modellierung werden erste Modellierungskompetenzen für den Physikunterricht der Sek. II vorgestellt.

Referenz:

Lembens, A. & Weberndorfer, C. (2015). “Mit Experimenten kann man Theorien beweisen” – NOS-Beliefs Studierender. In: S. Bernholt (Hrsg.), Heterogenität und Diversität – Vielfalt der Voraussetzungen im naturwissenschaftlichen Unterricht. Gesellschaft für Didaktik der Chemie und Physik, Jahrestagung in Bremen 2014 (S. 322-324). Kiel: IPN.

Den Beitrag können Sie hier als pdf herunterladen.

Der gesamte Tagungsband, in dem dieser Beitrag erschienen ist, ist ebenfalls online verfügbar.

Selbstreguliertes Lernen zu Beginn des Chemiestudiums

Selbstreguliertes Lernen zu Beginn des Chemiestudiums

Brebeck, Ingo & Sumfleth, Elke

Beitrag auf der GDCP-Jahrestagung 2014

Im Fokus des Projekts steht der Kompetenzbereich “Ordnen, Strukturieren, Modellieren” (OSM), welcher für die Naturwissenschaften von grosser Bedeutung ist. Unter Ordnen, Strukturieren, Modellieren wird dabei die Kompetenz verstanden “wahrgenommene Erscheinungen und Situationen mit schon bekannten Vorstellungen und Konzepten in Verbindung zu bringen sowie diese durch individuelle (Re-)Konstruktion weiterzuentwickeln (Konsortium, 2008). Zu diesem Bereich und für das Themengebiet “Stoffe und Stoffveränderungen” werden in einer empirischen Studie zwei verschiedene Tests, bestehend aus klassischen Multiple Choice Aufgaben bzw. Concept Map Aufgaben, eingesetzt und überprüft inwieweit diese den Kompetenzbereich OSM reliabel und valide erfassen können.
Im Vortrag werden die Auswertungsstrategie und die Ergebnisse der Pilotierung vorgestellt. Dabei stützen wir uns in der Auswertung auf die bereits bekannten Analyseverfahren von Stracke (2004) und erweitern diese. Zur inhaltlichen Validierung stützen wir uns auf das Modell hierarchischer Komplexität für den Inhaltsbereich Chemie (Bernholt, 2010).

Referenz:

Brebeck, I. & Sumfleth, E. (2015). Selbstreguliertes Lernen zu Beginn des Chemiestudiums. In: S. Bernholt (Hrsg.), Heterogenität und Diversität – Vielfalt der Voraussetzungen im naturwissenschaftlichen Unterricht. Gesellschaft für Didaktik der Chemie und Physik, Jahrestagung in Bremen 2014 (S. 277-279). Kiel: IPN.

Den Beitrag können Sie hier als pdf herunterladen.

Der gesamte Tagungsband, in dem dieser Beitrag erschienen ist, ist ebenfalls online verfügbar.

Heterogenität als “Kerngeschäft”: Neue Herausforderungen an das Professionswissen durch Seminarfächer

Heterogenität als “Kerngeschäft”: Neue Herausforderungen an das Professionswissen durch Seminarfächer

Weirauch, Katja & Geidel, Ekkehard

Beitrag auf der GDCP-Jahrestagung 2014

Für die mathematische Modellierung physikalischer Phänomene spielen funktionale Zusammenhänge eine bedeutende Rolle. Diese können mit Hilfe verschiedener mathematischer Darstellungen repräsentiert werden. Die Kompetenz, Darstellungswechsel auszuführen, steht mit dem Verständnis des entsprechenden Zusammenhangs in Verbindung (Leuders & Prediger 2005) und sollte daher im Physikunterricht entwickelt werden. Dazu ist es notwendig, die entsprechenden Ausgangsvoraussetzungen und Denkprozesse der Schüler zu kennen.
Ausgehend von physik- und mathematikdidaktischen Forschungsergebnissen wurde ein Modell entwickelt, das Darstellungswechsel funktionaler Zusammenhänge im Physikunterricht differenziert betrachtet. Mit dessen Hilfe wird das Vorgehen von Schülern der Sekundarstufe 1 bei der Bearbeitung von physikalisch-mathematischen Problemaufgaben beschrieben, die verschiedene Darstellungswechsel funktionaler Zusammenhänge erfordern. Außerdem soll eine Kategorisierung ihrer Schwierigkeiten bei der Aufgabenbearbeitung stattfinden.

Referenz:

Weirauch, K. & Geidel, E. (2015). Heterogenität als “Kerngeschäft”: Neue Herausforderungen an das Professionswissen durch Seminarfächer. In: S. Bernholt (Hrsg.), Heterogenität und Diversität – Vielfalt der Voraussetzungen im naturwissenschaftlichen Unterricht. Gesellschaft für Didaktik der Chemie und Physik, Jahrestagung in Bremen 2014 (S. 325-327). Kiel: IPN.

Den Beitrag können Sie hier als pdf herunterladen.

Der gesamte Tagungsband, in dem dieser Beitrag erschienen ist, ist ebenfalls online verfügbar.

Ein projektbasiertes Lernmodell: Umweltprojekte: Eine Inhaltsanalyse

Ein projektbasiertes Lernmodell: Umweltprojekte: Eine Inhaltsanalyse

Temel, Senar, Özgür, Sinem Dinçol & Y?lmaz, Ayhan

Beitrag auf der GDCP-Jahrestagung 2014

Im Kindergarten bereiten die pädagogischen Fachkräfte in vielen Fällen naturwissenschaftliche Lernumgebungen in Form von Angeboten vor. Diese sind mehr oder weniger stark strukturiert. Laut der Empathizing-Systemizing (E-S)-Theory von Baron-Cohen (2009) haben Menschen unterschiedliche Braintypes, die dazu führen, dass Personen sich entweder eher an Strukturen oder an Mitmenschen orientieren. Im Rahmen dieser Studie soll herausgefunden werden, ob diese Braintypes sich auf das Aufmerksamkeitsverhalten in naturwissenschaftlichen Lernumgebungen auswirken. Dazu wurde ein in der Literatur vorliegender Fragebogen ins Deutsche übersetzt, argumentativ validiert und bei 24 Vorschulkindern pilotiert. Diese Kinder nahmen an einer stark strukturierten naturwissenschaftlichen Lernumgebung teil und wurden dabei videographiert. Anschließend wurde das Aufmerksamkeitsverhalten einzelner Kinder ausgewertet. Erste Ergebnisse der Pilotstudie werden im Vortrag vorgestellt.

Referenz:

Temel, S., Özgür, S. Dinçol & Y?lmaz, A. (2015). Ein projektbasiertes Lernmodell: Umweltprojekte: Eine Inhaltsanalyse. In: S. Bernholt (Hrsg.), Heterogenität und Diversität – Vielfalt der Voraussetzungen im naturwissenschaftlichen Unterricht. Gesellschaft für Didaktik der Chemie und Physik, Jahrestagung in Bremen 2014 (S. 280-282). Kiel: IPN.

Den Beitrag können Sie hier als pdf herunterladen.

Der gesamte Tagungsband, in dem dieser Beitrag erschienen ist, ist ebenfalls online verfügbar.

Quantitative Validierung eines Testinstruments zu Selbstwirksamkeits-erwartungen in physikdidaktischen Handlungsfeldern – Erste Ergebnisse

Quantitative Validierung eines Testinstruments zu Selbstwirksamkeits-erwartungen in physikdidaktischen Handlungsfeldern – Erste Ergebnisse

Meinhardt, Claudia, Rabe, Thorid & Krey, Olaf

Beitrag auf der GDCP-Jahrestagung 2014

Eine Vorstudie in der Primarstufe zeigt beim Lernen mit instrumentellen Handlungen und beim Lernen mit Bildern keinen Unterschied im physikalischen Wissenserwerb. Dies ist erwartungskonform, da nach dem Stand der Forschung die kognitiven Prozesse entscheidend für den Wissenserwerb sind. Eine robuste Methode kognitive Prozesse zu initiieren, sind Selbsterklärungen. Auch in der Primarstufe zeigt sich eine lernförderliche Wirkung von Selbsterklärungen beim Lernen mit Bildern. Deren Wirkung an instrumentellen Handlungen ist jedoch noch offen – auch in der Primarstufe. Eine experimentelle Laborstudie mit 2×2-Design soll die Frage beantworten, ob instrumentelle Handlungen und induzierte Selbsterklärungen den physikalischen Wissenserwerb in der Primarstufe unterstützen können. Untersucht werden vier Lernbedingungen: 1) Bilder ohne Selbsterklärung, 2) instrumentelle Handlungen ohne Selbsterklärung, 3) Bilder mit Selbsterklärung, 4) instrumentelle Handlungen mit Selbsterklärung. Die abhängige Variable ist der Wissenszuwachs. Im Vortrag werden Ergebnisse der Pilotstudie vorgestellt.

Referenz:

Meinhardt, C., Rabe, T. & Krey, O. (2015). Quantitative Validierung eines Testinstruments zu Selbstwirksamkeits-erwartungen in physikdidaktischen Handlungsfeldern – Erste Ergebnisse. In: S. Bernholt (Hrsg.), Heterogenität und Diversität – Vielfalt der Voraussetzungen im naturwissenschaftlichen Unterricht. Gesellschaft für Didaktik der Chemie und Physik, Jahrestagung in Bremen 2014 (S. 283-285). Kiel: IPN.

Den Beitrag können Sie hier als pdf herunterladen.

Der gesamte Tagungsband, in dem dieser Beitrag erschienen ist, ist ebenfalls online verfügbar.

Einfluss von Praxisphasen auf die Unterrichtsplanung und -reflexion von Physik-Lehramtsstudierenden

Einfluss von Praxisphasen auf die Unterrichtsplanung und -reflexion von Physik-Lehramtsstudierenden

Ruberg, Tanja & Komorek, Michael

Beitrag auf der GDCP-Jahrestagung 2014

Forschungsergebnisse zeigen, dass schon Grundschulkinder systematische Strategien des Experimentierens (Variablenkontrollstrategie, Unterscheidung zwischen konklusiven und inkonklusiven Tests) erlernen können (Sodian, Thoermer & Koerber, 2008) und dass gezielte Fördermaßnahmen positive Effekte darauf haben (Grygier, 2008). Als mögliche Fördermaßnahmen werden ein Lernen durch Unterstützung (scaffolding) und ein Lernen durch Tun (open inquiry-Ansatz) diskutiert.
In der vorliegenden Untersuchung wird in einem Prä-Post-Follow-up-Design mit Baseline geprüft, wie sich Scaffoldingmaßnahmen mit implizitem und explizitem modeling im Vergleich zu einem open inquiry-Ansatz auf die Förderung experimenteller Kompetenzen der Kinder auswirken. Dabei kommt ein in Kooperation mit der Arbeitsgruppe um Elsbeth Stern entwickelter Test zum Einsatz, der eine differenzierte Erfassung der Effekte der Intervention auf die Bereiche der Variablenkontrollstrategie und der Unterscheidung zwischen konklusiven und inkonklusiven Tests ermöglicht. Im Vortrag werden der Test präsentiert und erste Ergebnisse berichtet.

Referenz:

Ruberg, T. & Komorek, M. (2015). Einfluss von Praxisphasen auf die Unterrichtsplanung und -reflexion von Physik-Lehramtsstudierenden. In: S. Bernholt (Hrsg.), Heterogenität und Diversität – Vielfalt der Voraussetzungen im naturwissenschaftlichen Unterricht. Gesellschaft für Didaktik der Chemie und Physik, Jahrestagung in Bremen 2014 (S. 286-288). Kiel: IPN.

Den Beitrag können Sie hier als pdf herunterladen.

Der gesamte Tagungsband, in dem dieser Beitrag erschienen ist, ist ebenfalls online verfügbar.

Urteilen und Entscheiden in Kontexten nachhaltiger Entwicklung

Urteilen und Entscheiden in Kontexten nachhaltiger Entwicklung

Sander, Hannes & Höttecke, Dietmar

Beitrag auf der GDCP-Jahrestagung 2014

Ziel ist die Entwicklung und Validierung einer Learning Progression zum Basiskonzept „Chemische Reaktion“ in der Sekundarstufe I, um mögliche, effiziente Lernverläufe zu identifizieren. In einer Strand Map kann eine solche Progression veranschaulicht werden, indem auf die Basiskonzepte „Chemische Reaktion“ und „Struktur der Materie“ bezogene Fähigkeiten sowie zwischen ihnen angenommene Relationen dargestellt werden. Mit einem auf Basis der Strand Map entwickelten Papier-Bleistift-Test (Multiple-Choice-Single-Select) werden die Fähigkeiten von ca. 500 Lernenden der Jahrgangsstufen 7-9 erfasst. Mithilfe von IRT-Methoden werden Itemschwierigkeiten geschätzt und in der Learning Progression angenommene Progressionsstufen überprüft. Das Vorliegen angenommener Abhängigkeiten zwischen Fähigkeiten wird mittels Korrelationsanalysen und Strukturgleichungsmodellen untersucht. Basierend auf Erkenntnissen aus einer Pilotstudie, in der Item Separation Reliability (.84) und EAP/PV-Reliabilität (.68) zufriedenstellend waren, wurden elf der 98 Items für die Hauptstudie im Juni 2015 überarbeitet.

Referenz:

Sander, H. & Höttecke, D. (2015). Urteilen und Entscheiden in Kontexten nachhaltiger Entwicklung. In: S. Bernholt (Hrsg.), Heterogenität und Diversität – Vielfalt der Voraussetzungen im naturwissenschaftlichen Unterricht. Gesellschaft für Didaktik der Chemie und Physik, Jahrestagung in Bremen 2014 (S. 241-243). Kiel: IPN.

Den Beitrag können Sie hier als pdf herunterladen.

Der gesamte Tagungsband, in dem dieser Beitrag erschienen ist, ist ebenfalls online verfügbar.

Berufsorientierende Lernaufgaben

Berufsorientierende Lernaufgaben

Sokolowski, Sascha & Pietzner, Verena

Beitrag auf der GDCP-Jahrestagung 2014

Zentrales Ziel naturwissenschaftlichen Unterrichts ist die Entwicklung eines integrierten Verständnisses des Energiekonzepts. Ein solches Verständnis schließt das Verständnis von vier Aspekten ein: Energieformen, -umwandlung, -entwertung und -erhaltung. Die naturwissenschaftsdidaktische Forschung zeigt, dass sich das Verständnis dieser Aspekte sequentiell entlang der genannten Reihenfolge entwickelt. Insbesondere der Aspekt der Erhaltung wird von den meisten Schülerinnen und Schülern auch am Ende der Schulzeit nicht verstanden. Im vorgestellten Promotionsvorhaben soll der Einfluss verschiedener Vermittlungsansätze auf die Entwicklung des Energieverständnisses untersucht werden. Im Rahmen einer experimentellen Prä-Post-Vergleichsstudie wird eine eher sequentielle Vermittlung der Aspekte mit einer unitären Vermittlung, bei der Phänomene unter expliziter Einbeziehung aller Aspekte betrachtet werden, verglichen. Als weitere Variable werden unterschiedliche Strategien zur Veranschaulichung energetischer Prozesse eingesetzt. Im Vortrag werden das Projekt sowie erste Ergebnisse vorgestellt.

Referenz:

Sokolowski, S. & Pietzner, V. (2015). Berufsorientierende Lernaufgaben. In: S. Bernholt (Hrsg.), Heterogenität und Diversität – Vielfalt der Voraussetzungen im naturwissenschaftlichen Unterricht. Gesellschaft für Didaktik der Chemie und Physik, Jahrestagung in Bremen 2014 (S. 244-246). Kiel: IPN.

Den Beitrag können Sie hier als pdf herunterladen.

Der gesamte Tagungsband, in dem dieser Beitrag erschienen ist, ist ebenfalls online verfügbar.