Physikdidaktische Entwicklungsforschung am Beispiel Geometrische Optik

Physikdidaktische Entwicklungsforschung am Beispiel Geometrische Optik

Haagen-Schützenhöfer, Claudia

Beitrag auf der GDCP-Jahrestagung 2014

Mit dem verbindlichen Postulat der UN-Behindertenrechtskonvention von 2009 nach gleichwertiger Teilhabe am Schulleben aller Lernenden entfachte auch die Forderung nach Unterrichtskonzeptionen für das gemeinsame Lernen. Für den inklusiven Chemieunterricht mangelt es bisweilen jedoch an erprobten und bewährten Instrumenten zur praktischen Umsetzung. Ziel des hier vorgestellten Projekts ist vor diesem Hintergrund die Entwicklung und Evaluation einer inklusiven Unterrichtseinheit für den Chemieunterricht der Sekundarstufe I, die auf Basis des Universal Design for Learning (UDL) gestaltet wird. Dabei bilden ein lehrerzentrierter Einführungsvortrag und eine mittels Selbsteinschätzungsbogen begleitete Lernphase eine Verbindung zwischen Strukturierung und Selbstregulation. Auf dem Poster werden das Design des Projekts und erste Ergebnisse vorgestellt.

Referenz:

Haagen-Schützenhöfer, C. (2015). Physikdidaktische Entwicklungsforschung am Beispiel Geometrische Optik. In: S. Bernholt (Hrsg.), Heterogenität und Diversität – Vielfalt der Voraussetzungen im naturwissenschaftlichen Unterricht. Gesellschaft für Didaktik der Chemie und Physik, Jahrestagung in Bremen 2014 (S. 441-443). Kiel: IPN.

Den Beitrag können Sie hier als pdf herunterladen.

Der gesamte Tagungsband, in dem dieser Beitrag erschienen ist, ist ebenfalls online verfügbar.

Konstruktivistische Merkmale und Motivation im Physikunterricht

Konstruktivistische Merkmale und Motivation im Physikunterricht

Beerenwinkel, Anne, von Arx, Matthias & Labudde, Peter

Beitrag auf der GDCP-Jahrestagung 2014

Zu Beginn des Jahres 2015 wurde an der Universität Duisburg-Essen eine neue DFG-Forschergruppe (FOR 2242) Akademisches Lernen und Studienerfolg in der Eingangsphase von naturwissenschaftlich-technischen Studiengängen (ALSTER) eingerichtet, in der in fünf Teilprojekten fächergruppenspezifische Bedingungen des Studienerfolgs untersucht werden. Hierbei stehen in der ersten Phase Untersuchungen zu Studienanforderungen und Lernvoraussetzungen im Vordergrund. Die Projekte werden in enger Kooperation von Wissenschaftlerinnen und Wissenschaftlern aus den Fachdidaktiken, den Fächern und der Psychologie durchgeführt. In dem Postersymposium werden in sechs Postern der übergreifende Rahmen und die einzelnen Projekte vorgestellt.

Referenz:

Beerenwinkel, A., von Arx, M. & Labudde, P. (2015). Konstruktivistische Merkmale und Motivation im Physikunterricht. In: S. Bernholt (Hrsg.), Heterogenität und Diversität – Vielfalt der Voraussetzungen im naturwissenschaftlichen Unterricht. Gesellschaft für Didaktik der Chemie und Physik, Jahrestagung in Bremen 2014 (S. 396-398). Kiel: IPN.

Den Beitrag können Sie hier als pdf herunterladen.

Der gesamte Tagungsband, in dem dieser Beitrag erschienen ist, ist ebenfalls online verfügbar.

Treibhauseffekt und Co. voneinander differenzieren lernen

Treibhauseffekt und Co. voneinander differenzieren lernen

Roßbegalle, Thomas & Ralle, Bernd

Beitrag auf der GDCP-Jahrestagung 2014

Die Aktualität der Thematik Nachhaltigkeit wird sowohl durch curriculare Arbeiten im Bereich der Green Chemistry (Burmeister, Jokmin & Eilks, 2011) als auch in der Umsetzung eines nachhaltigen organischen Praktikums (Hopf et al., 2004) deutlich. Mit dem Poster wird ein Lernzirkel für den naturwissenschaftlichen Unterricht vorgestellt, der sich sowohl an dem Mehrdimensionenmodell (Deutscher Bundestag, 1998) orientiert als auch theoretische Überlegungen zur Gestaltungskompetenz (Programm Transfer 21, 2007) und Syndrome Globalen Wandels einbezieht. Eingesetzt werden kann dieser im interdisziplinären Kontext des Biologie- und Chemieunterrichts, womit er eine erste, orientierende Grundlage für die Erarbeitung eines Gesamtkonzepts „Nachhaltigkeit im Biologie- und Chemieunterricht“ bietet.

Referenz:

Roßbegalle, T. & Ralle, B. (2015). Treibhauseffekt und Co. voneinander differenzieren lernen. In: S. Bernholt (Hrsg.), Heterogenität und Diversität – Vielfalt der Voraussetzungen im naturwissenschaftlichen Unterricht. Gesellschaft für Didaktik der Chemie und Physik, Jahrestagung in Bremen 2014 (S. 444-446). Kiel: IPN.

Den Beitrag können Sie hier als pdf herunterladen.

Der gesamte Tagungsband, in dem dieser Beitrag erschienen ist, ist ebenfalls online verfügbar.

Survey Experimente – Der Einsatz von Experimenten im Physikunterricht

Survey Experimente – Der Einsatz von Experimenten im Physikunterricht

Karaböcek, Fadime & Erb, Roger

Beitrag auf der GDCP-Jahrestagung 2014

Vor dem Hintergrund steigender Studierendenzahlen bei gleichzeitig hohen Quoten an Studien-abbrüchen, insbesondere in den naturwissenschaftlich-technischen Studiengängen, kommt der Kenntnis von Prädiktoren des Studienerfolgs hohe Bedeutsamkeit zu. Ziel des hier beschriebenen Teilprojektes ist es deshalb, die Ergebnisse aller anderen Teilprojekte zusammenzuführen und übergreifend eine systematisch angelegte fachspezifische Modellierung des Studienerfolgs zu entwickeln. Dabei sollen relevante Einflussgrößen des Studienerfolgs identifiziert und ein Modell zum Beziehungsgefüge überprüft werden.
In diesem Moderated-Mediation-Modell wird Studienerfolg (z.B. Wissenszuwachs) durch Prädiktoren wie z.B. kognitive Fähigkeiten und motivationale Dispositionen vorhergesagt. Es wird angenommen, dass diese Variablen direkt auf den Studienerfolg wirken, aber auch mediiert über Lernstrategien und Studienzufriedenheit. Außerdem wird angenommen, dass die direkten Effekte der Prädiktoren auf den Studienerfolg durch die spezifischen Anforderungen des jeweiligen Studienfaches moderiert werden.

Referenz:

Karaböcek, F. & Erb, R. (2015). Survey Experimente – Der Einsatz von Experimenten im Physikunterricht . In: S. Bernholt (Hrsg.), Heterogenität und Diversität – Vielfalt der Voraussetzungen im naturwissenschaftlichen Unterricht. Gesellschaft für Didaktik der Chemie und Physik, Jahrestagung in Bremen 2014 (S. 399-401). Kiel: IPN.

Den Beitrag können Sie hier als pdf herunterladen.

Der gesamte Tagungsband, in dem dieser Beitrag erschienen ist, ist ebenfalls online verfügbar.

Swiss Science Education – Innovative Unterrichtsentwicklung an Schulen

Swiss Science Education – Innovative Unterrichtsentwicklung an Schulen

Koch, Alexander F. , Stübi, Claudia, Felchlin, Irene & Labudde, Peter

Beitrag auf der GDCP-Jahrestagung 2014

An deutschen Hochschulen werden in den naturwissenschaftlich-technischen Studiengängen hohe Studienabbruchquoten verzeichnet, denen in Hinblick auf einen drohenden Fachkräftemangel besondere Bedeutung zukommt.
Ziel dieses Teilprojektes ist es, längsschnittlich angelegte, chemiespezifische und fächervergleichende Analysen zu fachspezifischen Studienerfolgsprädiktoren in den MINT-Fächern durchzuführen. Dabei sollen die Wechselbeziehungen zwischen den verschiedenen Fähigkeiten in den grundlegenden Teilfächern der Chemie (allg. Chemie, AC, OC, PC) auf den Wissenszuwachs sowie deren jeweilige prädiktive Kraft für den Studienerfolg von Chemiestudierenden untersucht werden. Ergänzend wird der Einfluss des Vorwissens und des Lernerfolgs in der Allgemeinen Chemie bei Biologiestudierenden analysiert, die Chemie als Nebenfach studieren müssen. In diesen Analysen können alle in der Forschergruppe erhobenen Variablen als Kontrollvariablen berücksichtigt werden zu denen ebenfalls mathematische Fähigkeiten zählen.

Referenz:

Koch, A. F. , Stübi, C., Felchlin, I. & Labudde, P. (2015). Swiss Science Education – Innovative Unterrichtsentwicklung an Schulen. In: S. Bernholt (Hrsg.), Heterogenität und Diversität – Vielfalt der Voraussetzungen im naturwissenschaftlichen Unterricht. Gesellschaft für Didaktik der Chemie und Physik, Jahrestagung in Bremen 2014 (S. 402-404). Kiel: IPN.

Den Beitrag können Sie hier als pdf herunterladen.

Der gesamte Tagungsband, in dem dieser Beitrag erschienen ist, ist ebenfalls online verfügbar.

SWiSE vereint Modellschulen, Hochschulen und Kultusministerien

SWiSE vereint Modellschulen, Hochschulen und Kultusministerien

Stübi, Claudia, Labudde, Peter, Felchlin, Irene & Koch, Alexander F.

Beitrag auf der GDCP-Jahrestagung 2014

Während kognitive und metakognitive Strategien als Prädiktor für Studienerfolg hinreichend untersucht sind, nehmen ressourcenbezogene Strategien in diesem Zusammenhang eine zunehmend zentrale Rolle ein. Das Projekt fokussiert daher auf diese Strategien. Es wird untersucht, inwiefern Lernprobleme in der Studieneingangsphase auf Defizite beim Einsatz von ressourcenbezogenen Strategien zurückzufüh-ren sind und inwieweit die Verfügbarkeit und Nutzung dieser Strategien den Zusammenhang zwischen Persönlichkeitseigenschaften und Studienerfolg vermitteln. Hierfür sind drei Studien geplant. Studie eins identifiziert mittels Diskussionsgruppen Lernunterschiede zwischen Schule und Hochschule, die beson-dere Anforderungen an das Ressourcenmanagement stellen, sowie Bewältigungsstrategien, die Studie-rende kennen und nutzen. Die Ergebnisse bilden die Basis für ein Erhebungsinstrument, das in Studie zwei pilotiert wird. Studie drei überprüft Hypothesen zur Bedeutsamkeit, zu Defiziten sowie zur mediie-renden Rolle ressourcenbezogener Strategien im Studium und kontrastiert dabei verschiedene Fächer.

Referenz:

Stübi, C., Labudde, P., Felchlin, I. & Koch, A. F. (2015). SWiSE vereint Modellschulen, Hochschulen und Kultusministerien. In: S. Bernholt (Hrsg.), Heterogenität und Diversität – Vielfalt der Voraussetzungen im naturwissenschaftlichen Unterricht. Gesellschaft für Didaktik der Chemie und Physik, Jahrestagung in Bremen 2014 (S. 405-407). Kiel: IPN.

Den Beitrag können Sie hier als pdf herunterladen.

Der gesamte Tagungsband, in dem dieser Beitrag erschienen ist, ist ebenfalls online verfügbar.

Förderung der naturwissenschaftlichen Grundkompetenzen bei SWiSE

Förderung der naturwissenschaftlichen Grundkompetenzen bei SWiSE

Felchlin, Irene, Koch, Alexander F. , Stübi, Claudia & Labudde, Peter

Beitrag auf der GDCP-Jahrestagung 2014

Der geringe Studienerfolg im Fach Physik und in den Ingenieurwissenschaften ist ein fachspezifisches Problem mit gesellschaftlicher Relevanz. Die hohe Abbruch- (36%) und Wechselquote (26%) in Physik, aber auch der Bedarf an Physikerinnen und Physikern ist hoch. Es zeichnet sich auch ein erheblicher Mangel an Ingenieuren ab, da bundesweit 47% aller Studienanfänger das Ingenieurstudium ohne Abschluss beenden. Ziel des ALSTER-Teilprojektes ist die Vorhersage des Studienerfolgs (definiert als Beendigung des ersten Studiums). Als Prädiktoren für Studienerfolg werden u.a. die Fähigkeit zur mathematischen Modellierung angenommen. Diese wird mit einem Test operationalisiert, der im Inhaltsbereich Mechanik grundlegende Kompetenzen in den Bereichen Mathematik mit physikalischer/ingenieurwissenschaftlicher Bedeutung, physikalische/ingenieurwissenschaftliche Interpretation mathematischer Formulierungen und Mathematik als Technik misst. Davon ausgehend wird der Zusammenhang zwischen der Fähigkeit des fachbezogenen und mathematischen Modellierens und dem Studienerfolg untersucht.

Referenz:

Felchlin, I., Koch, A. F. , Stübi, C. & Labudde, P. (2015). Förderung der naturwissenschaftlichen Grundkompetenzen bei SWiSE. In: S. Bernholt (Hrsg.), Heterogenität und Diversität – Vielfalt der Voraussetzungen im naturwissenschaftlichen Unterricht. Gesellschaft für Didaktik der Chemie und Physik, Jahrestagung in Bremen 2014 (S. 408-410). Kiel: IPN.

Den Beitrag können Sie hier als pdf herunterladen.

Der gesamte Tagungsband, in dem dieser Beitrag erschienen ist, ist ebenfalls online verfügbar.

Handlungsnahe Kognitionen im Naturwissenschaftsunterricht

Handlungsnahe Kognitionen im Naturwissenschaftsunterricht

Koch, Alexander F. , Felchlin, Irene, Stübi, Claudia & Labudde, Peter

Beitrag auf der GDCP-Jahrestagung 2014

Multimediales Lernen ist auch in der Lehre der Chemie zunehmend in den Blickpunkt der Forschung gerückt. Dies zeigt sich mit Blick auf die Fülle von Visualisierungen in aktuellen Lehrbüchern chemischer Studiengänge. Im vorliegenden Projekt sollen diese Visualisierungen mittels umfassender Lehrbuchanalysen zunächst quantifiziert und klassifiziert werden.
In einem zweiten Schritt soll darauf basierend ein Test entwickelt werden, der die individuellen Fähigkeiten von Lernenden zum Umgang mit Visualisierungen („visuelles Modellverständnis“) vorhersagt. Anschließend soll überprüft werden, inwiefern dieses visuelle Modellverständnis ein Prädiktor für Studienerfolg sein kann. In Anlehnung an eine erweiterte Version der Cognitive Load Theory (Gerjets & Hesse, 2004) wird dabei angenommen, dass Modellverständnis und Lernerfolg keine unmittelbare Folge der Visualisierungsformen sind (z.B. sind nicht Kugel-Stab-Modelle per se verständlicher als Lewis-Formeln), sondern von individuellen Eigenschaften (z.B. räumliches Vorstellungsvermögen) abhängen, deren Erfassung Bestandteil des Projektes ist.

Referenz:

Koch, A. F. , Felchlin, I., Stübi, C. & Labudde, P. (2015). Handlungsnahe Kognitionen im Naturwissenschaftsunterricht. In: S. Bernholt (Hrsg.), Heterogenität und Diversität – Vielfalt der Voraussetzungen im naturwissenschaftlichen Unterricht. Gesellschaft für Didaktik der Chemie und Physik, Jahrestagung in Bremen 2014 (S. 411-413). Kiel: IPN.

Den Beitrag können Sie hier als pdf herunterladen.

Der gesamte Tagungsband, in dem dieser Beitrag erschienen ist, ist ebenfalls online verfügbar.

Leistungsentwicklung im Physikunterricht der gymnasialen Unterstufe

Leistungsentwicklung im Physikunterricht der gymnasialen Unterstufe

Krabbe, Heiko & Fischer, Hans E.

Beitrag auf der GDCP-Jahrestagung 2014

In den letzten Jahren hat sich die Auffassung durchgesetzt, dass das menschliche Gehirn nicht ein reiner Informationsprozessor darstellt, sondern, dass selbst abstrakte mentale Vorgänge durch sensomotorische Prozesse beeinflusst werden (Beilock & Hohmann, 2010). In diesem Sinne beschreibt die “Embodied Cognition” eine Theorie der mentalen Repräsentation, die davon ausgeht, dass eine Wechselwirkung zwischen Kognition, Sensorik und Motorik besteht und sich dies in der Repräsentation von Denkprozessen widerspiegelt. Unter anderem Smartphone-Experimente sind in der Lage, die Vorteile des Situierten Lernens (SW “Authentizität”) mit der “Embodied Cognition” zu verbinden: Lernende können so z. B. Beschleunigungsverläufe mit einem Alltagsgerät quantitativ untersuchen und gleichzeitig das physikalische Phänomen mit dem eigenen Körper wahrnehmen. Physikalische Theorien und Erkenntnisse werden dadurch nicht ausschließlich aus Messungen gefolgert, sondern gleichzeitig mit dem eigenen Körper “erlebt”. Ergebnisse einer Pilotstudie zu diesem Aspekt werden im Vortrag vorgestellt und diskutiert.

Referenz:

Krabbe, H. & Fischer, H. E. (2015). Leistungsentwicklung im Physikunterricht der gymnasialen Unterstufe. In: S. Bernholt (Hrsg.), Heterogenität und Diversität – Vielfalt der Voraussetzungen im naturwissenschaftlichen Unterricht. Gesellschaft für Didaktik der Chemie und Physik, Jahrestagung in Bremen 2014 (S. 367-369). Kiel: IPN.

Den Beitrag können Sie hier als pdf herunterladen.

Der gesamte Tagungsband, in dem dieser Beitrag erschienen ist, ist ebenfalls online verfügbar.

Mathematik in der Physik der Sekundarstufe II – Wie und Welche?

Mathematik in der Physik der Sekundarstufe II – Wie und Welche?

Trump, Stephanie & Borowski, Andreas

Beitrag auf der GDCP-Jahrestagung 2014

Schülerwettbewerbe wie die ScienceOlympiaden dienen der Identifikation und Förderung hochleistender Jugendlicher im Bereich MINT. Dies gelingt nicht für alle Jugendlichen gleich gut. So sind z.B. Mädchen in der Physikolympiade trotz ähnlicher Leistungen in den einschlägigen Schulleistungsstudien unterrepräsentiert. Zudem sinkt der Anteil über die Auswahlrunden überproportional. Um eine gründlichere Ausschöpfung des naturwissenschaftlichen Potenzials zu erreichen, gilt es zu verstehen, welche Mechanismen dieses Ungleichgewicht begünstigen. Mit diesem Ziel wurden im Rahmen eines Mixed-Method-Ansatzes die Teilnehmerinnen und Teilnehmer der vorletzten Auswahlrunde zur Physikolympiade mit Hilfe von Fragebögen und Interviews befragt. In der Analyse wurden sowohl strukturelle Faktoren als auch individuelle Dispositionen identifiziert, die für das Weiterkommen entscheidend sind. Der Vortrag stellt die Ergebnisse vor und leitet Implikationen für eine Optimierung des Auswahlprozesses für die Physikolympiade mit Blick auf eine bessere Ausschöpfung des naturwissenschaftlichen Potentials ab.

Referenz:

Trump, S. & Borowski, A. (2015). Mathematik in der Physik der Sekundarstufe II – Wie und Welche?. In: S. Bernholt (Hrsg.), Heterogenität und Diversität – Vielfalt der Voraussetzungen im naturwissenschaftlichen Unterricht. Gesellschaft für Didaktik der Chemie und Physik, Jahrestagung in Bremen 2014 (S. 370-372). Kiel: IPN.

Den Beitrag können Sie hier als pdf herunterladen.

Der gesamte Tagungsband, in dem dieser Beitrag erschienen ist, ist ebenfalls online verfügbar.